Drawdown-Management and Fracture-Spacing Optimization in the Meramec Formation: Numerical- and Economics-Based Approach

Author:

Almasoodi Mouin1,Vaidya Ravi1,Reza Zulfiquar2

Affiliation:

1. Devon Energy

2. University of Oklahoma

Abstract

Summary Optimal spacing between fracture clusters has eluded reservoir and completions engineers since the inception of multistage hydraulic fracturing. Very small fracture spacing could result in fracture to fracture (intrawell) interference and a higher completion cost, whereas very large fracture spacing could lead to inefficient hydrocarbon recovery, which is detrimental to the well economics. Meramec Formation has moved to full-field development, and multiple wells are put on production in a relatively short time. Depending on the desired economic metric, net present value (NPV), or rate of return (ROR), the magnitude of intrawell interference can be optimized by adjusting fracture spacing. For instance, if the objective is to maximize ROR, then tighter fracture spacing can be accepted. Furthermore, petroleum economics are often ignored in simulation studies, particularly the concepts of time value of money and oil-price sensitivity. This has led to a knowledge gap in identifying optimal drawdown procedure and fracture spacing from numerical models. This study proposes a framework that integrates petroleum economics with simulation results to optimize a horizontal well from the Meramec Formation. On the basis of this framework, we identified optimal drawdown procedure and fracture spacing. Then, oil-pricing sensitivity analysis was conducted to illustrate the effect of oil-price volatility on design parameters. Moreover, this study investigates the relative contribution of reservoir and completions characteristics with regard to short- and long-term well performance. These characteristics include drawdown management, fracture spacing, pressure-dependent permeability, critical gas saturation, and petrophysical properties. Available geologic data were integrated to construct a geologic model that is used to history match a well from the Meramec Formation. The geologic model covers an area of 640 acres that encompasses a multistage hydraulically fractured horizontal well. The well is unique because it is unbounded and has more than 2 years of continuous production without being disturbed by offset operations. Findings suggest that the drawdown strategy (aggressive vs. conservative) has more effect on short-term oil productivity than fracture spacing. Drawdown strategy even has more of an effect on short-term oil recovery than does a 20% error in porosity, or water saturation. Furthermore, the profile of the producing-gas/oil ratio (GOR) depends on completions efficiency, and it has been interpreted using linear-flow theory.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3