High Performance Computing and Speedup Techniques in Geochemical Modeling of Matrix Acidizing

Author:

Wei Wan1,Sanaei Alireza1,Bordeaux Rego Fabio1,Sepehrnoori Kamy1

Affiliation:

1. The University of Texas at Austin

Abstract

AbstractMatrix acidizing is a stimulation treatment during which acid is injected below formation fracture pressure. The purpose of acidizing is to enlarge pore space or create channels through dissolution of plugging particles and formation minerals near the wellbore. Simulation of acidizing process is computationally expensive, especially for geochemical simulation which considers full-species transport and complex reactions. In this paper, geochemical modeling of acidizing process is implemented through coupling two simulation models. One is UTCOMP (a 3D reservoir simulator) which is responsible for calculations of fluid flow and solute transport. The other is IPhreeqc (a geochemical package) which is responsible for calculations of kinetic and equilibrium reactions among minerals and aqueous species. Acidizing simulation through the coupled model UTCOMP-IPhreeqc is computationally expensive, and geochemical calculations through IPhreeqc are the computational bottleneck. To improve the computational efficiency, geochemical calculations which take up the majority of the computational time are parallelized. And speedup techniques are implemented to reduce the number of IPhreeqc calls through monitoring the amount change of geochemical components. We have validated the coupled model UTCOMP-IPhreeqc through comparison with the analytical solution in previous work. Parallel performance is measured by comparing total CPU time, CPU time spent on geochemical calculations, and speedup ratios among simulation runs using different processor numbers. For heterogeneous matrix, different dissolution patterns are generated under different injection rates, and the computational time varies depending on the total injection time and the average time step size. For different dissolution patterns, the overall speedup ratio is up to 6.69 when using 16 processors, reducing 85% of CPU time compared with the case using a single processor. The speedup ratio for geochemical calculations is up to 14.21 when using 16 processors, saving 93% of CPU time compared with the case using a single processor. Besides parallel computing, the speedup techniques also improve the computational efficiency, and obtain optimal performance for wormhole dissolution patterns in which most of the geochemical reactions occur in a localized volume. The computational time is reduced to 49% maintaining 96% accuracy compared with the case without using speedup techniques. The coupled model UTCOMP-IPhreeqc has the modeling ability of full-species transport and complex reactions. On this basis, the presented model significantly improves the computational efficiency of UTCOMP-IPhreeqc through parallel computing and speedup techniques reducing the computational time of geochemical calculations.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wormhole Geometry Modelling on Carbonate Matrix Acidizing: A Literature Review;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3