Capillary Rise in Micro-Channels Accounting for Boundary Layer Effect and Wall Roughness for Shale Oil

Author:

Shen Anqi1,Farouq Ali S. M.2,Soliman M. Y.2,Liu Yikun1

Affiliation:

1. Northeast Petroleum University

2. University of Houston

Abstract

Abstract A new capillary imbibition model is presented for shale that uses the momentum theorem of meniscus, for calculating the imbibition rate and height. Results are compared with those from previously published capillary rise models and also obtained in this research. The new capillary rise model considers two main micro-level effects, viz. wall roughness and boundary layer. The imbibed fluid is divided into two parts in the calculation. One is the fluid close to the wall, affected by the wall roughness. The resistance of wall roughness is treated analogously to flow in porous media. The other part is the bulk fluid with a boundary layer. Also considered is the effect of pressure on the boundary layer during the imbibition process. The effects of wall roughness and boundary layer are discussed and compared. An analytical expression for the evolution of the height of capillary rise in a single capillary and in a bundle capillaries is obtained as functions of time, considering both wall roughness and the boundary layer. It was found that the boundary layer enhances the nonlinear characteristic of imbibition, while it has a smaller influence on imbibition height, due to the relatively slow rate of imbibition at nano-scale. In nano-tubes, the wall roughness effect can be equivalent to that of a solid wall, which reduces the effective radius. Although the driving force of capillary rise is enhanced at nano-scale because of the small radius of capillary, the imbibition height does not increase compared to capillaries of larger radii at the same time, since these two microscale effects lower the capillary rise. However, for large times, the equilibrium height of capillary rise at nano-scale is higher than that in the larger radius capillary. The novelty of the new model is used to understand capillary imbibition in porous media with nano-channels, which constitute the main mechanism for shale oil recovery after fracturing. It is believed that the proposed model will lead to improved shale oil production calculations.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3