Relative Permeability of Foamy Oil for Different Types of Dissolved Gases

Author:

Bera Achinta1,Babadagli Tayfun1

Affiliation:

1. University of Alberta

Abstract

Summary Foamy-oil flow is encountered not only during the primary stage of the cold-heavy-oil-production (CHOP) process through evolving methane originally in the oil but also in the post-CHOP enhanced-oil-recovery (EOR) applications in which different gases are injected and dissolved in heavy oil. Despite remarkable efforts on the physics of foamy oil flow, the mechanics of its flow through porous media is not properly understood yet. This is mainly because of lack of detailed experimental studies at the core scale to clarify the physics of the process and to support numerical-modeling studies. One also should test foamy-oil flow for different types of EOR gases dissolved and evolved at different conditions under pressure depletion. The objective of the present work is to perform detailed laboratory experiments on foamy-oil flow through porous media. Pressure/volume/temperature (PVT) studies were conducted to determine the actual pressure ranges in the coreflooding experiments in the beginning. After dissolving different gases in dead oil at 400 psi for methane (CH4) and carbon dioxide (CO2) and 112 psi for propane, the oil was injected into a sandpack to saturate it. The solution-gas-drive test was started by opening the outlet valve of the coreholder after reaching equilibrium. To mimic typical post-CHOP EOR conditions with methane, propane, or CO2 injection, the pressure was kept high (400 psi for CO2 and CH4 and 112 psi for propane). The produced oil by solution-gas drive and the gas evolved were monitored by collecting them in a graduated cylinder and a gas cylinder, respectively, while the pressure was recorded by an automatic data-acquisition system. The experimental data provided information about the effect of initial pressure of the depletion test in the amount of oil and gas measured as well as the visual observations of bubble characteristics of the foamy oil. Results showed that, among the three gases, CO2 is a good candidate for foamy oil. Maximum oil recovery [more than 50% of original oil in place (OIP) (OOIP)] was obtained in case of CO2.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3