Oxidation and Ignition Behaviour of Saturated Hydrocarbon Samples With Crude Oils Using TG/DTG and DTA Thermal Analysis Techniques

Author:

Li J.1,Mehta S.A.1,Moore R.G.1,Ursenbach M.G.1,Zalewski E.1,Ferguson H.1,Okazawa N.E.1

Affiliation:

1. University of Calgary

Abstract

Abstract This research is aimed at providing a better understanding of the oxidation behaviour of fractions of crude oil, and to then develop an approach to improve ignition for air injection processes. In this research, Thermogravimetric and Differential Thermal Analysis (TG/DTA) techniques were used to investigate oxidation behaviour using thermal fingerprinting effects on pure paraffin samples and mixtures of pure components with crude oil. The results demonstrated that each paraffin sample shows different oxidation behaviours at low temperatures and high temperatures. The fractions lighter than C16 distill before they reach a temperature where oxidation reactions are significant. Only low temperature exothermic activities are apparent for the fractions between C16 and C26. The heavier fractions show both low and high temperature exothermic activities. The lower molecular weight samples show lower onset temperatures for oxidation reactions. With increasing molecular weight, the exothermic peak temperatures both in the low and high temperature regions shift to higher temperatures and increased energy release. When low activity Oil B and the more reactive Oil C were mixed with a small amount of paraffin sample heavier than C26, both crude oils showed intensified low temperature oxidation behaviour, with a greater magnitude of heat evolution. The addition of heavier paraffins offers the potential to accelerate reactions and improve ignition. Introduction High Pressure Air Injection (HPAI) has been proven as a potential and viable process for improving oil recovery from several light oil reservoirs. When air is injected into an oil reservoir, the oxygen contained in the air can potentially react with the oil in place by various oxidation reaction schemes. Success of such a process depends mainly on the crude oil properties and rock properties, as well as operating conditions. The oxidation behaviour and the conditions typically favouring auto-ignition of crude oils are of the utmost importance for light oil air injection. However, because of the low initial temperature of many of the formations, and the poor reactivity of some crude oils, the magnitude of timedelay is often so great that spontaneous ignition is not economically attractive. Chemical ignition is one of the options to improve ignition(1, 2). Unfortunately, little research has been documented. The potential for using thermal analysis techniques to investigate oxidation behaviour of crude oils during combustion has been realized. Thermal analysis techniques include Thermogravimetric (TG) and Differential Thermal Analysis techniques (DTA) or Differential Scanning Calorimetry (DSC). In TG, a small amount of a sample of crude oil, with or without sand, is heated in the presence of flowing air and the change in weight of the sample is recorded as a function of temperature. In DTA or DSC, the difference in temperature or energy input/output during hemical or physical transitions based on the differences between the sample and a reference material is recorded as a function oftemperature or time.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3