Transient Nonisothermal Fully Coupled Wellbore/Reservoir Model for Gas-Well Testing, Part 1: Modelling

Author:

Bahonar Mehdi1,Azaiez Jalel1,Chen Zhangxing John1

Affiliation:

1. University of Calgary

Abstract

Summary A numerical fully implicit nonisothermal wellbore/reservoir simulator is developed. The model entails simultaneous solution of transient coupled mass-, momentum-, and energy-balance equations within the wellbore; energy-balance equations for the tubular and cement materials and the formation surrounding the wellbore; and mass-balance and flow-rate/pressure equations for the reservoir formation. A wellbore heat-loss model that is a strong feature of this study is developed and employed in the model to improve the accuracy of the simulator and to be able to estimate the casing temperature and formation-temperature distribution. The model formulation is completed with an equation of state (EOS) to estimate fluid properties and appropriate friction-factor correlations in the wellbore tubing to compute the frictional pressure drop for different flow regimes. The developed model has several applications in the petroleum industry, particularly in the gas-well testing design and interpretation of both isothermal and nonisothermal gas reservoirs. This nonisothermal simulator is validated through comparisons to both analytical models and an equivalent numerical isothermal coupled wellbore/reservoir simulator that is also developed in this paper. Applications of this simulator to analyzing gas-well testing problems, in addition to several important observations, are extensively studied in Part 2 of this research work (Bahonar et al. 2010). Currently, it has been well accepted that the applicability and significance of a reservoir simulator depend on the behaviour of the wellbore and interaction between the wellbore and reservoir. A robust, accurate coupled wellbore and reservoir simulator is an invaluable tool for the petroleum engineer to help the petroleum industry understand production behaviour, make a meaningful prediction, and make correct decisions in all field-development and production stages.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3