Effect of Stress Shadow Caused by Multistage Fracturing from Multiple Well Pads on Fracture Initiation and Near-Wellbore Propagation from Infill Wells

Author:

Wang Xiaohua1,Zhang Fengshou2,Tang Meirong3,Du Xianfei3,Tang Jizhou4

Affiliation:

1. College of Civil Engineering, Tongji University

2. College of Civil Engineering, Tongji University (Corresponding author)

3. Oil and Gas Technology Research Institute, PetroChina Changqing Oilfield Company

4. School of Ocean and Earth Science, Tongji University

Abstract

Summary Multistage fracturing with multiwell pads (MSFMP) is an essential technology for the efficient development of unconventional oil and gas reservoirs, but the reservoir area between two well pads is often not stimulated. Fracture initiation and near-wellbore propagation from infill horizontal wells drilled with different azimuth from the optimal azimuth in the unstimulated area is poorly understood, largely because of the stress shadow (or induced stress) caused by MSFMP. In this study, we propose an integrated method for calculating the stress shadow caused by MSFMP and then determine optimal completion parameters for infill horizontal wells in the unstimulated connecting area between two well pads. First, we develop a theoretical stress shadow model caused by MSFMP on the basis of the dislocation theory. Considering two extreme cases, fully open and completely closed propped fractures, the range of stress shadow in the unstimulated area after MSFMP of 20 horizontal wells in Platform H of tight reservoirs in the Changqing Oilfield, China, is considered as an example. Second, we import the calculated stress shadow into a 3D perforated fracturing model that is built based on the discrete lattice method. Then, we investigate the influence of perforation technology, horizontal wellbore azimuth, phase angle, and injection rate on fracture initiation and near-wellbore propagation. Our results show that this model is capable of calculating stress shadow at any position and then can be used to optimize the fracturing interval for the middle unstimulated area. We find that appropriate perforation and fracturing parameters significantly decrease the complexity of near-wellbore fractures. The models and results presented in this paper provide a new method and new insight for quantifying and optimizing fracture initiation and propagation for infill horizontal wells to maximize reservoir stimulation efficiency.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3