The New Generation of Outflow Control Devices Autonomously Controlling the Conformance of Water Injection Well- A Case Study with ADNOC Onshore

Author:

Al Shemaili Sultan Ibrahim1,Fawzy Ahmed Mohamed1,Assreti Elamari1,El Maghraby Mohamed1,Moradi Mojtaba2,Chaube Prabodh2,Mohammed Tawheed2

Affiliation:

1. ADNOC Onshore

2. Tendeka

Abstract

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3