Preformed-Particle-Gel Extrusion Through Open Conduits During Conformance-Control Treatments

Author:

Imqam Abdulmohsin1,Bai Baojun1,Ramadan Mustafa Al1,Wei Mingzhen1,Delshad Mojdeh2,Sepehrnoori Kamy2

Affiliation:

1. Missouri University of Science and Technology

2. University of Texas at Austin

Abstract

Summary Millimeter-sized (10 μm–mm) preformed particle gels (PPGs) have been used successfully as conformance-control agents in more than 5,000 wells. They help to control both water and CO2 production through high-permeability streaks or conduits (large pore openings), which naturally exist or are aggravated either by mineral solution or by a high injection pressure during the flooding process. This paper explores several factors that can have an important impact on the injectivity and plugging efficiency of PPGs in these conduits. Extensive experiments were conducted to examine the effect of the conduit inner diameter and the PPG strength on the ratio of the particle size to the opening diameter, injectivity index, resistance factor, and plugging efficiency. Five-foot tubes with four internal diameters were designed to emulate the opening conduits. Three pressure taps were mounted along the tubes to monitor PPG transport and plugging performance. The results show that weak gel has less injection pressure at a large particle/opening ratio compared to strong gel. PPG strength affected injectivity more significantly than did particle/opening ratio. Resistance factor increased as the brine concentration and conduit inner diameter increased. PPGs can significantly reduce the permeability of a conduit, and their plugging efficiency depends highly on the particle strength and the conduit inner diameter. The particle size of PPGs was reduced during their transport through conduits. Experimental results confirm that the size reduction was caused by both dehydration and breakdown. On the basis of the laboratory data, two correlations were developed to quantitatively calculate the resistance factor and the stable injection pressure as a function of the particle strength, particle/opening ratio, and shear rate. This research provides significant insight into designing better millimeter-sized particle-gel treatments intended for use in large openings, including open fractures, caves, worm holes, and conduits.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3