Affiliation:
1. Schlumberger Cambridge Research
2. Birkbeck College
3. Statoil
4. Inst. Français du Pétrole
Abstract
Summary
We investigate the invasion of solids and their mobility during cleanup. We study the effect of weighting agent particle size on rock substrates of varying permeabilities. We find permeability damage increases but flow initiation pressures decrease with increasing substrate permeability.
We obtain quantitative profiles of solids invasion by scanning electron microscopy/x-ray mapping and synchrotron energy-dispersive x-ray diffraction tomography. We compare these profiles to core sectioning data. We find invasion profiles drop steeply but fines are observed deep within the core. We examine the effect of backflooding on the invasion profile. Near-surface damage is reduced but deeply invaded fines are unaffected by backflow.
We develop a deep bed filtration model for solids invasion and consequent permeability reduction. This model is compared to the profiles obtained in the invasion experiments. We find that we can fit the experimental invasion profile for monomodal particles using a single trapping coefficient. Backflow is modeled by reversing the flow rate. We postulate a phenomenological rate of erosion to untrap particles in line with experimental observations (30%). When erosion is included in the model, a peak in the backflow pressure is found. This peak may be correlated with the experimentally observed flow initiation pressure.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献