An Iterative Sequence for Phase-Equilibria Calculations Incorporating the Redlich-Kwong Equation of State

Author:

Fussell D.D.1,Yanosik J.L.1

Affiliation:

1. Amoco Production Co.

Abstract

Abstract Phase equilibria equations that incorporate the Redlich-Kwong equation of state are nonlinear and, therefore, must be solved by an iterative method. The method of successive substitutions commonly is used. This method, however, almost always diverges near the critical region for bubble point, dew point, and two-phase calculations. Iterative methods that converge for these calculations are presented. These iterative methods are called presented. These iterative methods are called "minimum variable Newton-Raphson" (MVNR) methods because they try to minimize the number of variable for which simultaneous iteration is required and use the Newton-Raphson method for the correction step. Procedures are given for obtaining starting values for the first iteration and several example problems are discussed. Introduction Reservoir performance predictions for gas condensate and volatile oil reservoirs require a knowledge of the vapor-liquid phase equilbria of the reservoir fluids. A similar knowledge also is required when studying multiple-contact, miscible oil recovery methods that involve injection of hydrocarbons and/or carbon dioxide. Such knowledge is obtained experimentally or calculated from physical properties of the components of the physical properties of the components of the reservoir fluid system. Calculation is desirable because experimental determination is both laborious and expensive. A common basis for calculation of vapor-liquid phase equilibria is the single-stage separation unit. phase equilibria is the single-stage separation unit. This unit represents a PVT cell in which a fluid mixture of known over-all composition is equilibrated at the temperature and pressure of interest. Liquid and vapor compositions and moles of liquid and vapor per mole of fluid mixture are determined. Reliable estimates of other fluid properties (such as phase densities and viscosities) are obtained readily with these properties. The Redlich-Kwong equation of state is used widely in the petroleum industry for phase equilibria calculations. The phase equilibria equations that incorporate this equation of state are nonlinear. As a result, they must be solved by an iterative method. The method of successive substitutions commonly is used. This method, however, almost always diverges for bubble point, dew point, and two-phase calculations near the critical region. This region is extremely important when studying multiple-contact, miscible oil recovery methods involving CO2 or rich-gas injection because the path of the over-all fluid mixture passes through path of the over-all fluid mixture passes through this region. The method of successive substitutions also will diverge for some fluid mixtures near their saturation (bubble point or dew point) pressure at conditions removed from the critical region. This paper presents a reliable iterative sequence that can be used to predict phase equilibria of multiple-contact, miscible oil recovery methods. The method includes sequences for calculation of the saturation pressure and phase equilibria in the two phase region. These MVNR methods rely on minimization of the number of unknowns for which simultaneous iteration is required and use the Newton-Raphson method for the correction step. Minimization is subject to the constraint that all additional unknowns can be calculated by using simple linear equations or, at most, an iteration method applied to one equation in one unknown. MVNR is compared with the method of successive substitutions for a two-phase fluid mixture at various pressures for a fixed temperature. MVNR also is compared with the method of successive substitutions for saturation-envelope calculations near the critical region. DESCRIPTION OF PHYSICAL SYSTEM The single-stage separation unit is the basis for the phase equilibria calculations discussed in this study. This unit represents a PVT cell in which a fluid mixture of known over-all composition is equilibrated at the temperature and pressure of interest. SPEJ P. 173

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compositional Reservoir Simulation: A Review;SPE Journal;2022-03-31

2. Application of neural network to speed-up equilibrium calculations in compositional reservoir simulation;Artificial Intelligence in Geosciences;2021-12

3. Bibliography;The Mathematics of Fluid Flow Through Porous Media;2021-08-03

4. Development of a fast EoS based compositional model for three-phase core flooding;SN Applied Sciences;2019-12-07

5. Density-based phase envelope construction;Fluid Phase Equilibria;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3