Effects of Entrained Hydrocarbon and Organic-Matter Components on Reservoir Quality of Organic-Rich Shales: Implications for “Sweet Spot” Identification and Enhanced-Oil-Recovery Applications in the Duvernay Formation (Canada)

Author:

Ghanizadeh Amin1,Clarkson Christopher R.1,Clarke Katherine M.1,Yang Zhengru1,Rashidi Behrad1,Vahedian Atena1,Song Chengyao1,DeBuhr Chris1,Haghshenas Behjat1,Ardakani Omid H.2,Sanei Hamed3,Royer Dean P.4

Affiliation:

1. University of Calgary

2. Geological Survey of Canada

3. Aarhus University

4. Encana Corporation

Abstract

Summary The hydrocarbon (HC)-storage capacity of organic-rich shales depends on porosity and surface area, whereas pore-throat-size distribution and pore-throat-network connectivity control permeability. The pores within the organic matter (OM) of organic-rich shales develop during thermal maturation as different HC phases are generated and expelled from the OM. Organic-rich shales can potentially retain a large proportion of the HCs generated during the diagenesis process. Commercial HC production from liquid-rich shale reservoirs can be achieved using completion technologies such as multistage-fractured horizontal wells. However, the ability of industry to identify “sweet spots” along multistage-fractured horizontal wells for both primary and enhanced oil recovery (EOR) is still hampered by insufficient understanding of the effects of type/content of entrained HC/OM components on reservoir quality. The primary objectives of the current study are therefore to establish an integrated experimental workflow to investigate the effect of entrained HC/OM on storage and transport properties of the organic-rich shales, and to provide examples of that experimental workflow through analyzing a selected sample suite from a prolific shale-oil reservoir (the Duvernay Formation) in western Canada. To accomplish this goal, a comprehensive suite of petrophysical analyses is performed on a diverse sample suite from the Duvernay Formation that differs in OM content (2.8 to 5 wt%; n = 5), before and after sequential pyrolysis by a revised Rock-Eval analysis [extended-slow-heating (ESH) Rock-Eval analysis]. Using the ESH cycle, different HC/OM components can be distinguished more easily and reliably during the pyrolysis process: free light oil (S1ESH; up to 150°C), fluid-like HC residue (FHR) (S2a; 150 to 380°C), and solid bitumen/residual carbon (S2b; 380 to 650°C). The characterization techniques used at each stage are helium pycnometry (grain density, helium porosity); low-pressure gas [nitrogen (N2), carbon dioxide (CO2)] adsorption (LPA) [pore volume (PV), surface area, pore-size distribution (PSD) within micropores, mesopores, and smaller macropores]; crushed-rock gas [helium, CO2, N2] permeability; and rate-of-adsorption (ROA) analysis (CO2, N2). Scanning-electron-microscopy (SEM) analysis is further conducted to verify/support the petrophysical observations. Powder X-ray-diffraction (XRD) analyses were performed on all samples in the “as-received” state and after Stage S2b (thermal pyrolysis up to 650°C) to quantify variations in mineralogical compositions and their possible controls on the evolution of petrophysical properties (i.e., porosity/permeability). Organic petrography was conducted on selected samples to characterize the nature of OM. Compared with the “as-received” state, porosity, permeability, modal-pore-size distribution, and surface-area increase with sequential pyrolysis stages, associated with the expulsion and devolatilization of free light oil and FHR (S2a; up to 380°C). However, the change in petrophysical properties associated with the degradation of solid bitumen/residual carbon (S2b; up to 650°C) is variable and unpredictable. The observed reduction in porosity/permeability values after Stage S2b is likely attributed to the occlusion of PV with solid bitumen/residual carbon degradation (i.e., coking); sample swelling caused by water loss from the lattice structure of clay minerals (i.e., illite); and sample compaction as a result of OM removal from the rock matrix. Among various stages of the ESH Rock-Eval pyrolysis, the petrophysical properties that are measured after Stages S1ESH and S2a, as they are related to the expulsion of the lighter and heavier free-HC compounds from the rock matrix, are expected to be the most important for primary and EOR applications. Quantification of the evolution of reservoir quality with HC generation/expulsion has important implications for identifying petrophysical “sweet spots” within unconventional reservoirs, optimizing stimulation design, and targeting specific zones within the reservoir of interest with the OM content/type amenable to maximizing gas storage/transport during cyclic solvent injection for EOR applications. The integrated experimental workflow proposed herein could be of significant interest to the operators of organic-rich shale/mudstone plays (e.g., the Duvernay) as a screening tool for developing optimized stimulation treatments for improving primary and enhanced HC recovery.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3