An Innovative Approach To Integrate Fracture, Well-Test, and Production Data Into Reservoir Models

Author:

Bahar Asnul1,Ates Harun1,Al-Deeb Maged H.2,Salem Salem E.2,Badaam Hussein2,Linthorst Steef2,Kelkar Mohan3

Affiliation:

1. Kelkar and Assocs. Inc.

2. ADCO

3. U. of Tulsa

Abstract

Summary This paper presents an innovative approach to integrate fracture, well-test, and production data into the static description of a reservoir model as an input to the flow simulation. The approach has been implemented successfully in a field study of a giant naturally fractured carbonate reservoir in the Middle East. This study was part of a full-field integrated reservoir-characterization and flow-simulation project. The main input available for this work includes matrix properties and fracture-network, well-test, and production data. Stochastic models of matrix properties were generated using a geo-statistical methodology based on well logs, core, seismic data, and geological interpretation. The fracture network was described in the reservoir as lineaments (fracture swarms) showing two major fracture trends. The network and its properties (i.e., fracture porosities and permeabilities) were generated by reconciling seismic, well-log, and dynamic data (Well Test and Production Log Tool, PLT).** The challenge of the study is to integrate all the input in an efficient and practical way to produce a consistent model between static and dynamic data. As a result, it is expected to reduce the history-matching effort. This challenge was solved by an innovative iterative procedure between the static and dynamic models. The static part consists of the calibration of model permeability to match the well-test permeability. It is done by comparing their flow potentials, kh. In this analysis, the dominant factor in controlling production at each well, either matrix or fracture, was determined. Based on the dominant factor, matrix or fracture permeability was modified accordingly. This way, the changes in permeability are consistent with the geological understanding of the field. The dynamic part was carried out through a full-field flow simulation to integrate production data. The flow simulation at this stage was used to match production capacity, [i.e., to determine whether the given permeability (matrix and fracture) distribution is enough to produce the fluid at the specified pressure during the producing period of the well]. The iteration is stopped once a reasonable production-capacity match is obtained. In general, a good match was achieved within three to four iterations. The generated reservoir description is expected to substantially reduce the effort required to obtain a good history match.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3