Physics-Driven Machine-Learning-Based Borehole Sonic Interpretation in the Presence of Casing and Drillpipe

Author:

Liang Lin1,Lei Ting2,Donald Adam2,Blyth Matthew2

Affiliation:

1. Schlumberger (Corresponding author; email: lliang@slb.com)

2. Schlumberger

Abstract

Summary Interpretation of sonic data acquired by a logging-while-drilling (LWD) tool or wireline tool in cased holes is complicated by the presence of drillpipe or casing because those steel pipes can act as a strong waveguide. Traditional solutions, which rely on using a frequency bandpass filter or waveform arrival-time separation to filter out the unwanted pipe mode, often fail when formation and pipe signals coexist in the same frequency band or arrival-time range. We hence developed a physics-driven machine-learning-based method to overcome the challenge. In this method, two synthetic databases are generated from a general root-finding mode-search routine on the basis of two assumed models: One is defined as a cemented cased hole for a wireline scenario, and the other is defined as a steel pipe immersed in a fluid-filled borehole for the logging-while-drilling scenario. The synthetic databases are used to train neural network models, which are first used to perform global sensitivity analysis on all relevant model parameters so that the influence of each parameter on the dipole dispersion data can be well understood. A least-squares inversion scheme using the trained model was developed and tested on synthetic cases. The scheme showed good results, and a reasonable uncertainty estimate was made for each parameter. We then extended the application of the trained model to develop a method for automated labeling and extraction of the dipole flexural dispersion mode from other disturbances. The method combines the clustering technique with the neural-network-model-based inversion and an adaptive filter. Testing on field data demonstrates that the new method is superior to traditional methods because it introduces a mechanism from which unwanted pipe mode can be physically filtered out. This novel physics-driven machine-learning-based method improved the interpretation of sonic dipole dispersion data to cope with the challenge brought by the existence of steel pipes. Unlike data-driven machine learning methods, it can provide global service with just one-time offline training. Compared with traditional methods, the new method is more accurate and reliable because the processing is confined by physical laws. This method is less dependent on input parameters; hence, a fully automated solution could be achieved.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of drilling fluid lost-circulation zone based on deep learning;Energy;2023-08

2. Sonic Well-Log Imputation Through Machine-Learning-Based Uncertainty Models;Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description;2023-04-01

3. Real-Time Compressional Sonic Log Prediction from Drilling and Mud Gas Data Using Machine Learning;Day 2 Tue, November 01, 2022;2022-10-31

4. Automated interpretation and quality control of logging-while-drilling quadrupole sonic dispersion in anisotropic formations;Second International Meeting for Applied Geoscience & Energy;2022-08-15

5. Lost circulation prediction based on machine learning;Journal of Petroleum Science and Engineering;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3