Experimental Investigation and Computational Insights of Enhanced Rheological Stability of Water-Based Drilling Fluids by Microspherical Polymers

Author:

Xu Lin1ORCID,Shen Jiamin2ORCID,Xu Mingbiao3,Wu Shuqi2,Wang Xiaotang2,Bao Yu2,Huang Meilan4,Yu Chunyan2,Ding Yu2

Affiliation:

1. School of Petrochemical Engineering and Environment, Zhejiang Ocean University (Corresponding author)

2. School of Petrochemical Engineering and Environment, Zhejiang Ocean University

3. Hubei Collaborative Innovation Center for Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University

4. School of Chemistry and Chemical Engineering, Queen’s University of Belfast

Abstract

Summary 3D bulk polymer, as an alternative to linear polymer, has exhibited large potential in formulating high-performance water-based drilling fluids. Understanding the mechanism behind the enhanced rheological stability of drilling fluids by microspherical polymers is critical for designing and developing new high-performance drilling fluids. In this work, we conducted a pioneering investigation that integrated experimental techniques with computational modeling, to explore the enhancement mechanism involved in the targeted drilling fluids. Inverse emulsion polymerization experiments were first carried out to fabricate the microspherical polymer acrylic acid (AA), acrylamide (AM), and 2-acryloylamino-2-methyl-1-propanesulfonic acid [P(AA-AM-AMPS)], and then physicochemical properties of microspherical polymer were characterized. Subsequently, the performance of drilling fluids with microspherical polymer as an additive was systematically evaluated. Finally, molecular simulations were used to investigate the characteristics of chemical active sites, molecular conformation, and structural variation at various temperatures. The results showed that the final microspherical polymer has a core-shell structure, with an average size of 198.3 nm and a molecular weight of 6.2×106 g/mol. The 3D structure exhibits good thermal stability, and thermal decomposition occurs above 220°C. The drilling fluids formulated with the microspherical polymer showed better rheological stability in the medium-low (4–65°C) and medium-ultrahigh (40–240°C) temperature ranges, compared with the relevant drilling fluids with the parallel linear polymer. Analyses on electrostatic potentials (ESPs) and frontier molecular orbital (FMO) revealed that active groups within the confined sphere domain mainly include carbonyl C = O and amide -CO(NH2). Additionally, these active groups exhibit a hierarchical distribution in the outer molecular region. Analyses on the radius of gyration (Rg) and the radial distribution function g(r) further validated the core-shell structure of microspherical polymer and its temperature-resistant stability. Moreover, a new self-consistent structural compensation model was proposed to rationalize the structure-activity relationship of microspherical polymer in drilling fluids. The computational results align well with the experimental findings. This pioneering work will provide valuable information for both the synthesis of new functional additives and the formulation of tailored-performance drilling fluids.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3