Adapting Shallow and Deep Learning Algorithms to Examine Production Performance – Data Analytics and Forecasting

Author:

Biswas Deepankar1

Affiliation:

1. ActiveReservoir

Abstract

Abstract In the last few years there is an increasing interest in the industry to apply Machine Learning (ML) algorithms to improve business decisions and operational efficiencies. The driver behind are the 3V's (velocity, variety and volume) of data acquisition and synthesis. The enormity of making sense out of this data pile is either too cumbersome for direct human interpretability or insurmountably time consuming (and often impractical) for physics-based models. The Machine Learning techniques systematically unravel the underlying trends and interrelationships between the driver and response variables. However, the application of these data science techniques are still relatively new in the petroleum industry and needs careful selection and adaptability to improve their forecasting success. This paper contributes in applying some of these techniques, especially deep and shallow learning algorithms, in a systematic manner, traversing step-by-step methodology of data preparation, exploratory data analysis, model selection, model validation, model parameter tuning, selection of variable of importance and model application. In particular, data sets are prepared for both Supervised Regression (continuous) and Classification (categorical) methods. Post exploratory data analysis, multivariate regression along with Multicollinearity/Variation Inflation Factor and outlier tests are applied to reduce the predictor variable list. Thereafter, classification models e.g. Gradient Boosting, Support Vector Machine, k-Nearest neighbors, Decision Trees, Random Forest etc. are progressively disciplined on training data sets to be tested on the hold-out data sets. Accuracy of predictability is compared against standard goodness-of-fit metrics. Finally, stratified k-fold cross validation methodology is applied to tune model parameters and list variables of importance. First the Shallow and Deep Learning process flow is applied to a large Delaware basin data set comprising of 5716 horizontal wells scattered in the various members of Wolfcamp formations. The original database contains a total of 131 predictor variables containing 26 reservoir, 21 completion, 22 well architecture. 53 production and 9 reservoir fluid related. The dataset is mined for individual Wolfcamp members. Results are provided to demonstrate model's predictive accuracy, applicability to a new dataset and potential pitfalls in forecasting if certain statistical metrics are ignored. The important variables of interest (in the statistically reduced dataset) which are assigned more weights in the predictive process are also enlisted. Next, as a second case study, a different Deep Learning methods (Long Short Term Memory, LSTM) is applied to history match and forecast an Eagle Ford well decline curve, to demonstrate the viability of this method in forecasting production. The paper contributes towards better understanding of some of the ubiquitous black-box ML algorithms, define an appropriate process flow to analyze large datasets and help petroleum engineers and geoscientists to apply them more rigorously and robustly in their own applications.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3