A Comprehensive Kinetics Model for Light Oil Oxidation/Combustion Reactions under High Pressure Air Injection Process (HPAI)

Author:

Barzin Y..1,Moore R. G.1,Mehta S. A.1,Ursenbach M. G.1,Tabasinejad F..2

Affiliation:

1. University of Calgary

2. Belgrave Oil & Gas Corp

Abstract

Abstract It is acknowledged that chemical reactions and their kinetics play a major role on the success of both light and heavy oil air injection processes. Historically, Light oil reactions have been characterized mostly using conventional heavy oil kinetics models. However, sensitivity of the reaction kinetics to phase behavior and compositional changes in light oils call for a comprehensive study of kinetics of light oil oxidation. This paper provides a new and comprehensive kinetic model for light oils oxidation/combustion reactions under HPAI, through experimental studies and numerical simulation. For the purpose of this research, a high pressure ramped temperature oxidation reactor (HPRTO) was designed. 15 air injection and nitrogen injection experiments were conducted on the mixture of light oil, water, and core. Based on the data, observations, and understandings achieved during the course of the experimental study, a reaction kinetic model was set up. This primary kinetic model was then incorporated into a thermal numerical simulation model to replicate the behavior of the conducted air injection tests. After fine-tuning of some kinetic parameters against the experimental data, the final proposed model was verified by its successful application to two other different cases. The significant finding of this research, which is the main feature of the proposed kinetic model, was the recognition and characterization of the potential vapor phase combustion reactions during the HPAI process and incorporating them into a light oil kinetics model. The model integrates the hydrocarbon compositional changes and energy generation characteristics of the oxygen addition or so called LTO reactions. Introducing the concept of flammability range into the kinetic model and defining the flammable limits for vapor fuel mixture in this model enables accurate prediction of ignition and exhaustion of the combustion reactions in the vapor phase. Lack of a reliable kinetics model for incorporation into field numerical simulations has been a limiting factor to the prospective vast applications of HPAI as an enhanced recovery method. The kinetics model proposed in this paper, which is supported by extensive experimental data, could successfully predict the oxidation/combustion behavior of two different light oils under the conditions associated with high-pressure air injection tests. The paper also presents a framework for application of the kinetics model to any light oil under HPAI.

Publisher

SPE

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3