Complex Carbonate Rock Typing and Saturation Modeling with Highly-Coupled Geological Description and Petrophysical Properties

Author:

BinAbadat Ebtesam1,Bu-Hindi Hani1,Al-Farisi Omar1,Kumar Atul1,Zahaf Kamel1,Ibrahim Loay1,Liu Yaxin1,Darous Christophe2,Barillas Luisa2

Affiliation:

1. ADNOC Offshore

2. Schlumberger Oil Company

Abstract

Abstract Reservoir Rock Typing and saturation modeling need a two-sided methodology. One side is the geological side of the rock types to populate properties within geological concepts. The other side is addressing reservoir flow and dynamic initialization with capillary pressure. The difficulty is to comply with both aspects especially in carbonates reservoirs with complex diagenesis and migration history. The objective of this paper is to describe the methodology and the results obtained in a complex carbonate reservoir. The approach is initiated from the sedimentological description from cores and complemented with microfacies from thin sections. The core-based rock types use the dominant rock fabrics, as well as the cementation and dissolution diagenetic processes. The groups are limited to similar pore throat size distribution and porosity-permeability relationships to stay compatible with property modeling at a later stage. At log-scale, the rock typing has a focus on the estimation of permeability using the most appropriate logs available in all wells. Those logs are porosity, mineral volumes, normalized saturation in invaded zone (Sxo), macro-porosity from borehole image or Nuclear Magnetic Resonance (NMR), NMR T2 log mean relaxation, and rigidity from sonic logs. A specific calculation to identify the presence of tar is also included to assess the permeability better and further interpret the saturation history. The MICP data defined the saturation height functions, according to the modality of the pore throat size. The log derived saturation, and the SHFs are used to identify Free Water Level (FWL) positions and interpret the migration history. The rock typing classification is well connected with the geological aspects of the reservoirs since it originates from the sedimentological description and the diagenetic processes. We identified a total of 21 rock types across all the formations of interest. We associated rock types with depositional environments ranging from supra-tidal to open marine that controls both the original rock fabrics and the diagenetic processes. The rock typing classification is also appropriate to model permeability and saturation since core petrophysical measurements were in use during the classification. The permeability estimation from logs uses multivariate regressions that have proven to be sensitive to permeability after a Principal Component Analysis per zones and per lithologies. The difference between the core permeability and the permeability derived from logs stays within one-fold of standard deviation as compared to the initial 3-fold range of porosity-permeability. We assigned the rock types with three Saturation Height Function (SHF) classes; (unimodal-dolomite, unimodal- limestone & Multimodal-Limestone). The log derived water saturation (Sw) from logs and SHF shows acceptable agreement. The reservoir rock typing and saturation modeling methodology described in this paper are considerate of honoring geological features and petrophysical properties to solve for complex diagenesis and post-migration fluid alteration and movement processes.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3