Strategies for Sizing Particles in Drilling and Completion Fluids

Author:

Suri Ajay1,Sharma Mukul M.1

Affiliation:

1. U. of Texas at Austin

Abstract

Summary To minimize formation damage caused by drill-in and completion fluids, solids must be sized to satisfy two important criteria. First, they must be large enough to not invade the rock, and second, they must be small enough to form filter cake that effectively filters drill solids and polymers from entering the formation. These criteria, when used together with the model presented in this paper, quantitatively determine the particle size that should be used in drill-in fluids for a given formation permeability, overbalance pressure, and mud formulation. A model is presented that estimates the depth and degree of formation damage caused by solids of widely different sizes present in drilling or completion fluids. The depth of damage and permeability loss is calculated after the invasion of the mud and also after flowback. The effect of the particle size distribution in the fluid, particle concentration, overbalance pressure, and permeability of the formation are studied. It is demonstrated that particle invasion and flowback processes are largely dependent on the particle size in the mud and the permeability of the formation. The results of the model are shown to agree well with mud filtration experiments. To better estimate the particle size distribution in drill-in and completion fluids, different methods for measuring particle sizes were investigated. These results show that the measured particle sizes can vary over two orders of magnitude depending on the technique used and on sample preparation. Based on a comparative analysis of several samples, light-scattering techniques are recommended for measuring the particle size distribution. Recommendations for sample preparation are also provided.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3