A New Approach To Evaluate Fault-Sliding Potential With Reservoir Depletion

Author:

Zhao Kai1,Li Xiaorong2,Yan Chuanliang3,Feng Yongcun2,Dou Liangbin4,Li Jing3

Affiliation:

1. Xi’an Shiyou University and Shanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs

2. University of Texas at Austin

3. China University of Petroleum, East China

4. Xi’an Shiyou University

Abstract

Summary Fault reactivation caused by reservoir depletion has been an important issue faced by the oil and gas industry. Traditional views suggest that with reservoir depletion, only normal faults can be activated and fault stability either monotonically decreases or increases, which are not consistent with field observations. In this paper, a fault–sliding–potential (FSP) model was developed to analyze fault stability during reservoir depletion for different types of faults. The evolution trend of fault stability with reservoir depletion and the corresponding judging criteria were obtained by calculating the derivatives of FSP. The influences of reservoir depletion on nonsealing and sealing faults were investigated. Case studies were performed to analyze FSP for different types of nonsealing and sealing faults with different fault properties and attitudes. The results show that reverse and strike faults might also be reactivated with reservoir depletion. The fault stability might not monotonically decrease or increase; instead, four evolution patterns of fault stability might occur, with reservoir depletion dependent on the parameters of the faults. Reservoir depletion usually leads to a higher sliding risk for sealing faults than for nonsealing faults. The results also indicate that fault stability is a strong function of fault attitudes, including the dip and strike of the fault.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3