Estimation and Analysis of Carbon Dioxide Friction Loss in Wellbore During Liquid/Supercritical Carbon Dioxide Fracturing

Author:

Li Xiaojiang1,Li Gensheng2,Sepehrnoori Kamy3,Yu Wei4,Wang Haizhu2,Liu Qingling2,Zhang Hongyuan2,Chen Zhiming2

Affiliation:

1. China University of Petroleum, Beijing, and Sinopec Research Institute of Petroleum Engineering

2. China University of Petroleum, Beijing

3. University of Texas at Austin

4. Texas A&M University

Abstract

Summary The push to extend fracturing to arid regions is drawing attention to water-free techniques, such as liquid/supercritical carbon dioxide (CO2) fracturing. It is important to understand CO2 flow behavior and thus to estimate the friction loss accurately in CO2 fracturing, but no focus on CO2 friction loss in large-scale tubulars has been made until now. Because of the difficulty in conducting field-scale experiments, we develop a computational-fluid-dynamics (CFD) model to simulate CO2 flow in circular pipes in this paper. The realizable k-ε turbulence model is used to simulate the large-Reynolds-number fully turbulent flow. An accurate equation of state (EOS) and transport models of CO2 are used to account for CO2-properties variations with pressure and temperature. The roughness of the pipe wall also is considered. Our model is verified by comparing the simulation results with the experimental data of liquid CO2 and correlations developed for water-based fluid. It is confirmed that the friction loss of CO2 follows the phenomenological Darcy-Weisbach equation, regardless of the sensitivity of CO2 properties to pressure and temperature. The commonly used correlations also can give good predictions of the Darcy friction factor of CO2 within an acceptable tolerance of 4.5%, where the pressure range is 8 to 80 MPa, the temperature range is 250 to 400 K, the tubular-diameter range is 25.4 to 222.4 mm, and the Reynolds-number range is 105–108. Of all correlations used in this paper, the ones proposed by Colebrook and White (1937), Swamee and Jain (1976), Churchill (1977), and Haaland (1983) are recommended for field use. Finally, we investigate the influence of flowing pressure and temperature on Reynolds number, Darcy friction factor, and friction loss of CO2, and compare the difference between friction loss of water and of CO2 at different pressure, temperature, and flow-rate conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3