Affiliation:
1. China University of Petroleum, Beijing, and Sinopec Research Institute of Petroleum Engineering
2. China University of Petroleum, Beijing
3. University of Texas at Austin
4. Texas A&M University
Abstract
Summary
The push to extend fracturing to arid regions is drawing attention to water-free techniques, such as liquid/supercritical carbon dioxide (CO2) fracturing. It is important to understand CO2 flow behavior and thus to estimate the friction loss accurately in CO2 fracturing, but no focus on CO2 friction loss in large-scale tubulars has been made until now. Because of the difficulty in conducting field-scale experiments, we develop a computational-fluid-dynamics (CFD) model to simulate CO2 flow in circular pipes in this paper. The realizable k-ε turbulence model is used to simulate the large-Reynolds-number fully turbulent flow. An accurate equation of state (EOS) and transport models of CO2 are used to account for CO2-properties variations with pressure and temperature. The roughness of the pipe wall also is considered. Our model is verified by comparing the simulation results with the experimental data of liquid CO2 and correlations developed for water-based fluid. It is confirmed that the friction loss of CO2 follows the phenomenological Darcy-Weisbach equation, regardless of the sensitivity of CO2 properties to pressure and temperature. The commonly used correlations also can give good predictions of the Darcy friction factor of CO2 within an acceptable tolerance of 4.5%, where the pressure range is 8 to 80 MPa, the temperature range is 250 to 400 K, the tubular-diameter range is 25.4 to 222.4 mm, and the Reynolds-number range is 105–108. Of all correlations used in this paper, the ones proposed by Colebrook and White (1937), Swamee and Jain (1976), Churchill (1977), and Haaland (1983) are recommended for field use. Finally, we investigate the influence of flowing pressure and temperature on Reynolds number, Darcy friction factor, and friction loss of CO2, and compare the difference between friction loss of water and of CO2 at different pressure, temperature, and flow-rate conditions.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献