Feasibility Study of Improved Gas Recovery by Water Influx Control in Water Drive Gas Reservoirs

Author:

Ogolo N. A.1,Isebor J. O.1,Onyekonwu M. O1

Affiliation:

1. Institute of Petroleum Studies, University of Port Harcourt, Rivers State, Nigeria

Abstract

Abstract Gas recovery factor from water drive gas reservoirs is very low compared to recovery made from depletion drive gas reservoirs. Other problems associated with gas recovery from water drive mechanism include high residual gas saturation in the water invaded zone of the reservoir, high volume of produced water, abandonment at high reservoir pressures and high possibility of hydrate formation in pipe lines. The use of carbon dioxide (CO2) in displacing natural gas from volumetric gas reservoirs has been studied, practised and is successful. In this paper, it is proposed that extending this practice to gas reservoirs under strong water drive mechanism can improve recovery and control water influx. CO2 is denser than natural gas and water is denser than CO2. The different densities of these fluids can be taken advantage of to boost natural gas recovery from water drive gas reservoirs. The continuous CO2 injection process at the gas water (g/w) contact can partially prevent water encroachment into the system. The technique can change the water drive mechanism to full or partial depletion drive where CO2 will separate the natural gas zone from direct contact with the water zone. Any eventual water invasion into the reservoir affects the CO2 zone, not the upward moving natural gas zone. This technique was studied by simulation using data from a lean gas reservoir under strong water drive. Two cases were considered. In the first case, which is the reference case, gas production under water drive was allowed for 30years. In the second case, CO2 was injected at the initial gas water contact for the same number of years. Simulation results showed that water production from the reservoir was drastically reduced to about 60% in the second case because the rate of water influx into the reservoir was controlled. Gas recovery from two producer wells out of three that were considered improved above 10% and gas condensate recovery was improved to about 4% over the period of production that CO2 was injected.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3