Dual-Polymer Hydraulic-Fracturing Fluids: A Synergy Between Polysaccharides and Polyacrylamides

Author:

Almubarak Tariq1,Ng Jun Hong1,Nasr–El–Din Hisham A.1,Sokhanvarian Khatere2,AlKhaldi Mohammed3

Affiliation:

1. Texas A&M University

2. Sasol Performance Chemicals

3. Saudi Aramco

Abstract

Summary As exploration for oil and gas continues, it becomes necessary to produce from deeper formations, and to meet the challenge of low permeability and higher temperatures. Unconventional shale formations are addressed with slickwater fracturing fluids, owing to the shale's unique geomechanical properties. On the other hand, conventional formations require crosslinked fracturing fluids to properly enhance productivity. Guar and its derivatives have a history of success in crosslinked hydraulic–fracturing fluids. However, they require higher polymer loading to withstand higher–temperature environments. This leads to an increase in mixing time and additive requirements. Most importantly, as a result of high polymer loading, they do not break completely and thus generate residual–polymer fragments that can plug the formation and significantly reduce fracture conductivity. In this work, a new hybrid dual–polymer hydraulic–fracturing fluid was developed. The fluid consists of a guar derivative and a polyacrylamide–based synthetic polymer. Compared with conventional fracturing fluids, this new system is easily hydrated, requires fewer additives, can be mixed “on the fly,” and is capable of maintaining excellent rheological performance at low polymer loadings. The polymer mixture solutions were prepared at a total polymer concentration of 20 to 40 lbm/1,000 gal at volume ratios of 2:1, 1:1, and 1:2. The fluids were crosslinked with a metallic crosslinker and broken with an oxidizer at 300°F. Testing focused on crosslinker/polymer–ratio analysis to effectively lower loading while maintaining sufficient performance to carry proppant at this temperature. A high–pressure/high–temperature (HP/HT) rheometer was used to measure viscosity, storage modulus, and fluid–breaking performance. An HP/HT aging cell and HP/HT see–through cell were used for proppant settling. Fourier–transform infrared (FTIR) spectroscopy, Cryo scanning electron microscopy (Cryo–SEM), and an HP/HT rheometer were also used to understand the interaction. Results indicated that the dual–polymer fracturing fluid was able to generate stable viscosity at 300°F and 100 s−1 as well as generate a higher viscosity compared with the individual–polymer fracturing fluid. Also, properly understanding and tuning the crosslinker to the polymer ratio generated excellent performance at 20 lbm/1,000 gal. The two polymers formed an improved crosslinking network that enhanced proppant–carrying properties. This fluid also demonstrated a clean and controlled breaking performance with an oxidizer. Extensive experiments were pursued to evaluate the new dual–polymer system for the first time. This system exhibited a positive interaction between the polysaccharide and polyacrylamide families and generated excellent rheological properties. The major benefit of using a mixed–polymer system is reduced polymer loading. Lower loading is highly desirable because it reduces material cost, eases field operation, and potentially lowers damage to the fracture face, proppant pack, and formation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3