Foam Flow in Heterogeneous Porous Media: Effect of Cross Flow

Author:

Bertin H. J.1,Apaydin O. G.2,Castanier L. M.2,Kovscek A. R.2

Affiliation:

1. LEPT-ENSAM

2. Stanford U.

Abstract

Summary Previous experimental studies of foam generation and transport were conducted, mainly, in one-dimensional and homogeneous porous media. However, the field situation is primarily heterogeneous and multidimensional. To begin to bridge this gap, we have studied foam formation and propagation in an annularly heterogeneous porous medium. The experimental system was constructed by centering a 0.050 m diam cylindrical Fontainebleau sandstone core inside an 0.089 m acrylic tube and packing clean Ottawa sand in the annular region. The sandstone permeability is roughly 0.1 μm2 while the unconsolidated sand permeability is 6.7 μm2. Experiments with and without cross flow between the two porous media were conducted. To prevent cross flow, the cylindrical face of the sandstone was encased in a heat-shrink Teflon sleeve and the annular region packed with sand as before. Nitrogen is the gas phase and an alpha olefin sulfonate (AOS 1416) in brine is the foamer. The aqueous phase saturation distribution is garnered using X-ray computed tomography (CT). Results from this study are striking. When the heterogeneous layers are in capillary communication and cross flow is allowed, foam fronts move at identical rates in each porous medium as quantified by the CT-scan images. Desaturation by foam is efficient and typically complete in about 1 PV of gas injection. When cross flow is prohibited, foam partially plugs the high permeability sand and diverts flow into the low permeability sandstone. The foam front moves through the low permeability region faster than in the high permeability region.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3