Streamline Simulation Technology: Evolution and Recent Trends

Author:

Al-Najem A. A.1,Siddiqui S..1,Soliman M..1,Yuen B..2

Affiliation:

1. Texas Tech University

2. Saudi Aramco

Abstract

Abstract Streamline and streamtube methods have been used in fluid flow computations for many years. Early applications for hydrocarbon reservoir simulation were first reported by Fay and Pratts in the 1950s. Streamline-based flow simulation has made significant advances in the last 15 years. Today's simulators are fully three-dimensional and fully compressible and they account for gravity as well as complex well controls. Most recent advances also allow for compositional and thermal displacements. In this paper, we present a comprehensive review of the evolution and advancement of streamline simulation technology. This paper offers a general overview of most of the material available in the literature on the subject. This work includes the review of more than 200 technical papers and gives a chronological advancement of streamline simulation technology from 1996 to 2011. Firstly, three major areas are identified. These are development of streamline simulators, enhancements to current streamline simulators and applications. In view of the fact that this state of-the-art technology has been employed for a wide range of applications, we defined three major application areas that symbolize the relevance and validity of streamline simulation in addressing reservoir engineering concerns. These are history matching, reservoir management and upscaling, ranking and characterization of fine-grid geological models. Streamline simulation has undergone several phases within its short stretch in the petroleum industry. Initially, the main focus was on the speed advantage and less on fluid flow physics. Next, the focus was shifted to extend its applicability to more complex issues such as compositional and thermal simulations, which require the inclusion of more physics, and potentially reducing the advantage of computational time. Recently, the focus has shifted towards the application of streamline technologies to areas where it can complement finite difference simulation such as revealing important information about drainage areas, flood optimization and improvement of sweep efficiency, quantifying uncertainties, etc.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3