Modeling of Before Closure Zero Slope Pressure Derivative in a Diagnostic Fracture Injection Test DFIT

Author:

Liu Guoqing1,Wang Jie1,Ehlig-Economides Christine1

Affiliation:

1. University of Houston

Abstract

Abstract Recent diagnostic fracture injection test (DFIT) data presented on a Bourdet log-log diagnostic plot showed derivative slope of 0 in the before closure (BC) portion of the DFIT response. Some works qualitatively describe it as radial flow. This behavior has not been quantitatively analyzed, modeled and matched. The present work disagrees with the hypothesis of radial flow and successfully matches the relatively flat trend in the Bourdet derivative with a model dominated by friction dissipation coupled with tip extension. The flat trend in Bourdet derivative occurs shortly after shut-in during the before closure period. Because a flat derivative trend suggests diffusive radial flow, our first approach was to consider the possibility that an open crack at a layer interface stopped the fracture propagation and caused the apparent radial flow behavior observed in falloff data. However, a model that coupled pressure falloff from diffusive flow into a layer interface crack with pressure falloff from closure of a fracture that propagated up to the layer interface failed to reproduce the observed response. Subsequently, we discovered that existing models could match the data without considering the layer interface crack. We found that data processing is very important to what is observed in derivative trends and can mislead the behavior diagnosis. We succeeded to match one field DFIT case showing an obvious early flat trend. The presence and dominance of geomechanics, coupled with diffusive flow, disqualify the description of the flat trend in Bourdet derivative as radial flow. Instead, flow friction coupled with tip extension can completely match the observed behavior. Based on our model, cases with a long flat trend have large magnitude near-wellbore tortuosity friction loss and relatively long tip extension distance. Further, we match the near wellbore tortuosity behavior with rate raised to a power lower than the usually assumed 0.5. The significance of these analyses relates to two key factors. First, large magnitude near wellbore tortuosity friction loss increases the pressure required for fracture propagation during pumping. Second, tip extension is a way to dissipate high pumping pressure when very low formation permeability impedes leakoff. Matching transient behavior subject to the presence of both of these factors requires lowering the near-wellbore tortuosity exponent.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3