Assisted History Matching Using Three Derivative-Free Optimization Algorithms

Author:

Chen Chaohui1,Jin Long1,Gao Guohua1,Weber Daniel1,Vink Jeroen C.1,Hohl Detlef F.1,Alpak Faruk O.1,Pirmez Carlos2

Affiliation:

1. Shell International E&P Inc.

2. Shell Nigeria Exploration and Production Company

Abstract

Abstract Gradient-based optimization algorithms can be very efficient in history matching problems. Since many commercial reservoir simulators do not have an adjoint formulation built in, exploring capability and applicability of derivative-free optimization (DFO) algorithms is crucial. DFO algorithms treat the simulator as a black box and generate new searching points using objective function values only. DFO algorithms usually require more function evaluations, but this obstacle can be overcome by exploiting parallel computing. This paper tests three DFO algorithms, Very Fast Simulated Annealing (VFSA), Simultaneous Perturbation and Multivariate Interpolation (SPMI) and Quadratic Interpolation Model-based (QIM) algorithm. Both SPMI and QIM are model-based methods. The objective function is approximated by a quadratic model interpolating points evaluated in previous iterations, and new search points are obtained by minimizing the quadratic model within a trust region. VFSA is a stochastic search method. These algorithms were tested with two synthetic cases (IC fault model and Brugge model) and one deepwater field case. Principal Component Analysis is applied to the Brugge case to parameterize the reservoir model vector to less than 40 parameters. We obtained good matches with all three derivative-free methods. In terms of number of iterations used for converging and the final converged value of the objective function, SPMI outperforms the others. Since SPMI generates a large number of perturbation and search points simultaneously in one iteration, it requires more computer resources. QIM does not generate as many interpolation points as SPMI, and it converges more slowly in terms of time. VFSA is a sequential method and usually requires hundreds of iterations to converge.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3