NMR Investigation of Viscoelastic Surfactant Compatibility with Corrosion Inhibitors

Author:

Afra S.1,Samouei H.1,Nasr-El-Din H. A.1

Affiliation:

1. Texas A&M University

Abstract

Summary Viscoelastic surfactants (VESs) have been successfully applied as acid-diversion fluids. However, high-temperature (>200°F), interaction of VES with metallic cations, alcohol-based additives, and chelating agents all interfere with the apparent viscosity of VES-based acid and reduce its efficiency. Even though corrosion inhibitors constitute one of the most essential additives in acidizing, they can interfere with VES. Many other parameters also affect the performance of corrosion inhibitors, including tabular materials, acid types, and concentrations, as well as the presence of other additives that might interfere with the corrosion inhibitors. Hence, a wide range of corrosion inhibitors is available to address corrosion issues adequately. The present study characterizes the interactions of various types of industrial corrosion inhibitors with different types of VES-based systems, including zwitterionic and nonionic surfactants. In this work, we conducted viscosity measurements on VES-based solutions combined with different concentrations of tested corrosion inhibitor formulae to characterize the rheological properties of the VES-based acids. Visual tests were done to detect any incompatibilities. To understand the nature of the VES interactions with corrosion inhibitors at a temperature range of 78 to 200°F, nuclear magnetic resonance (NMR) spectroscopy was conducted. Corrosion tests were carried out to determine the effects of VES on the performances of corrosion inhibitors. The results of rheological measurements show that adding different types of corrosion inhibitors, in the industrial concentration range, leads to change in the conformation of micellar structures and rheology of the VES-based solutions. The main interactions/reactions are acid-base reactions and hydrogen bonding. The results of this study also show that the amide part of VES is the leading functional group that can interact with corrosion-inhibitor solutions and cause alternation of micellar structures because of change in the repulsion forces between surfactant headgroups. Corrosion results indicate that the addition of VES solutions would not affect the performance of corrosion inhibitors significantly. The results presented in this study can be used to select corrosion inhibitors more efficiently and optimize their effectiveness in the presence of VES-based fluids. These results can be used to predict any probable interactions and rheological changes in VES-based stimulation fluids because of the addition of corrosion inhibitors.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3