Fault Identification for the Purposes of Evaluating the Risk of Induced Seismicity: A Novel Application of the Flowback DFIT (DFIT-FBA)

Author:

Zeinabady Danial1,Clarkson Christopher R.1,Razzaghi Samaneh2,Haqparast Sadjad1,Benson Abdul-Latif L.1,Azad Mohammad1

Affiliation:

1. University of Calgary

2. Ovintiv Inc.

Abstract

Abstract The existence of faults, pre-existing hydraulic fractures, and depleted areas can have negative impacts on the development of unconventional reservoirs using multi-fractured horizontal wells (MFHWs). For example, the triggering of fault slippage through hydraulic fracturing can create the environmental hazard known as induced seismicity (earthquakes caused by hydraulic fracturing). A premium has therefore been placed on the development of technologies that can be used to identify the locations of fault systems (particularly if they are subseismic), as well as pre-existing hydraulic fractures and depleted areas that can similarly negatively impact reservoir exploitation. The objective of this study is to develop a diagnostic tool to identify these conditions using DFIT-FBA. DFIT-FBA is a modified diagnostic fracture injection test (DFIT) whereby a sequence of injection and flowback steps are performed to estimate minimum in-situ stress, fracture surface area, reservoir pressure, and permeability in shale and tight reservoirs. The time- and cost-efficiency of the DFIT-FBA method provides an opportunity to conduct multiple field tests at a single point, or along the lateral section of a horizontal well, without significantly delaying the completion program. The proposed diagnostic tool uses an analytical model which considers critical processes and mechanisms occurring during a DFIT-FBA test, including wellbore storage, leakoff rate, and fracture stiffness development. The results of analytical modeling demonstrate that faults, pre-existing hydraulic fractures, and depleted areas of the reservoir can be identified either by implementing multiple cycles of the DFIT-FBA test at a single point, or by applying multiple DFIT-FBA tests at different points along the lateral section of a horizontal well or at different wells. The analytical model is first verified using a fully-coupled hydraulic fracture, reservoir, and wellbore simulator, and flowing pressure responses in the presence of different reservoir heterogeneities are then illustrated. Practical application of the proposed method is demonstrated using DFIT-FBA field examples performed in a tight reservoir. Analysis of the field examples results in the conclusion that a fault occurs near the toe of the horizontal lateral. This finding was confirmed by other field information and provides the opportunity to modify the main-stage hydraulic fracturing design to avoid induced seismicity events. This study proposes a novel, fast, and low-cost approach for identifying faults, pre-existing hydraulic fractures, and depleted areas using the DFIT-FBA test. The recommended approach can help engineers to characterize the reservoir quality along a horizontal well, as well as identify features/conditions that could negatively influence reservoir development, such as faults (and the possibility of creating induced seismicity), pre-existing hydraulic fractures, and reservoir depletion.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3