Multiphase Rate-Transient Analysis in Unconventional Reservoirs: Theory and Application

Author:

Uzun Ilkay1,Kurtoglu Basak2,Kazemi Hossein1

Affiliation:

1. Colorado School of Mines

2. Citibank Global Energy

Abstract

Summary In unconventional reservoirs, production data are generally analyzed by use of rate-transient techniques derived from single-phase linear-flow models. Such linear-flow models use rate-normalized pressure, which is pressure drop divided by reservoir-flow rate vs. square root of time. In practice, the well-fluid production includes water, oil, and gas. The oil can be light oil, volatile oil, and gas/condensate as in the Bakken, Eagle Ford, and Barnett, respectively. Thus, single-phase analysis needs modification to account for production of fluid mixtures. In this paper, we present a multiphase-pressure-diffusivity equation to analyze multiphase flow in single- and dual-porosity models of unconventional reservoirs. Our approach is similar to the work presented by Perrine (1956); however, our approach has a theoretical foundation, whereas Perrine (1956) used pragmatic engineering analogy for constant flow rate in vertical wells only. In addition to oil, gas, and formation brine, our method accounts for gas/condensate production, and the flowback of the injected hydraulic-fracturing fluids. Overall, our proposed approach is more comprehensive than the single-phase models but maintains the simplicity of the conventional methods. Our paper includes diagnostic plots of rate-normalized well pressure for light oils and gas/condensates in unconventional reservoirs. Data from two Bakken and two Eagle Ford wells will be presented to demonstrate the usefulness of our approach. In addition to the mathematical analysis of flow-rate and pressure data, we will present the effect of well-stimulation and fluid-lift methods on the flow-rate characteristics of Bakken and Eagle Ford wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3