Field-Development Optimization of the In-Situ Upgrading Process Including the Ramp-Up Phase
Author:
Alpak Faruk O.1,
Gao Guohua2
Affiliation:
1. Shell International Exploration and Production
2. Shell Global Solutions
Abstract
Summary
Field-development optimization and optimization at the pattern scale are crucial to maximize the value of thermal enhanced-oil-recovery (EOR) projects. Application of a field net-present-value (NPV)-based pattern optimization algorithm honoring field-scale surface and subsurface constraints for in-situ-upgrading (IUP) projects has been described in the recent past. In this paper, we describe the development and application of a novel field-development-optimization capability, including the optimization of the ramp-up phase to accelerate the production to achieve a faster cash flow and high surface-facility utilization. We integrate this new capability into a robust field NPV optimization platform.
A two-stagefield-development optimization algorithm is developed in this work. First, the steady-state pattern is optimized using the field-scale pattern optimization algorithm while honoring field-scale constraints and using a combined surface and subsurface performance-indicator-driven objective function. Ramp-up pattern designs are optimized separately using a solely pattern-scaleperformance-driven objective function in this stage. A preliminary pattern-delay time optimization follows next to precondition the problem for the subsequent field-scale optimization stage. The ramp-up pattern and pattern-delay times are optimized using a constant steady-state pattern in the second step of the algorithm. An appropriately penalized field-NPV-based objective function is used in this step to enforce field-scale surface and subsurface constraints.
Optimization results on a realistic example application indicate that the time to oil-rate plateau could be significantly reduced on the order of multiple years while honoring the surface production constraints. This requires the use of an optimized ramp-up pattern in conjunction with the optimal steady-state pattern. The ramp-up pattern is approximately two patterns wide and features an increased heater density to deliver production acceleration. It is also notably more robust against the effects of subsurface uncertainties.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献