Methods for Estimating Fracture Abundance and Size From Borehole Observations

Author:

Berg Charles R.1

Affiliation:

1. ResDip Systems

Abstract

Summary This study develops deterministic, exact equations relating fracture frequency (P10), density (P32), and length and width dimensions of rectangular and elliptical fractures from borehole observations. These general equations are applicable to both image logs and cores. A Monte Carlo type of simulation model generated the stochastic data used to derive the equations. The equations use five basic parameters relating frequency to density: borehole diameter, fracture length, fracture width, fracture angle with borehole axis (β), and the rotation angle of the long fracture axis within the fracture plane (γ). For both general equations, density corrections can be applied to individual fractures to find density. Fracture porosity is calculated on a per–fracture basis by applying aperture to density corrections. Both equations match the model to within the small standard deviation between simulations. In addition, the elliptical equation generally agrees with the existing exact theory. The study also develops methods for calculating fracture height (width) and length for rectangular fractures. Fracture height and length are calculated by observing the borehole–enclosed height and length and comparing them with the borehole–enclosed area. The calculation of fracture size is extended to estimate block height and length (block–face size.) These relationships cover a wide range of fracture size and orientation vs. borehole diameter. The theory is valid from small boreholes to tunnels. The general equations consider fractures as planar objects with length and width dimensions and negligible aperture compared with the other dimensions. Fracture aperture is applied, on a per–fracture basis, after the density correction to calculate fracture porosity. In addition to density and porosity calculations, an existing method for fracture–frequency prediction is improved by applying the general relationships. The methods described here are demonstrated using an image log from a vertical well from British Columbia, Canada. In this well, an image log was run over the Triassic section, including the zone of interest, the Montney Formation. Although the average fracture size in the Montney was very large, possibly on the order of tens of meters, they had a much smaller block–face size, on the order of a few meters, which could explain some of the production aspects from this formation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3