Machine Learning Applications of 4D Seismic in Carbonate: Case Study Offshore Abu Dhabi

Author:

Mahgoub Mohamed Abdelghany1,Bashir Yasir1,Berry Andy Anderson1

Affiliation:

1. Universiti Sains Malaysia

Abstract

Abstract Seismic 4D analysis is a model for integrating different disciplines in the oil and gas industry, such as seismic, petrophysics, reservoir engineering, and production engineering. Two 3D seismic surveys were conducted in the studied area with low repeatability of the recordings: the baseline survey in 1994 and the monitoring survey in 2014. A full 4D seismic co-processing of the baseline and monitor surveys was performed for both surveys starting with the field tapes. The 4D seismic co-processing improved poor seismic acquisition repeatability and 4D seismic attributes such as NRMS and predictability showed that. 4D time-trace shift was also performed, using the baseline survey as a reference to measure the time shifts between the baseline survey and the monitor survey at 20-year intervals. Dynamic 4D trace warping was followed by seismic 4D inversion to compare the 4D difference in the seismic inverted data with the difference in seismic amplitude. The seismic inversion helped overcome noise, multiple contamination, and differences in dynamic amplitude range between the baseline and seismic monitoring measurements. Applications of machine learning in the geosciences are growing rapidly in both processing and seismic interpretation. We then examined the relationship between well logs and seismic volumes by predicting a volume of log properties at the well locations of the seismic volume. In this method, we computed a possibly nonlinear operator that can predict well logs based on the properties of the adjacent seismic data. We then tested the Deep Forward Neural Network (DFNN) on six wells to adequately train and validate the machine learning approach using baseline seismic inversion data and monitoring data. The objective of trying such a supervised machine learning approach was to predict the density and porosity of both the baseline seismic data and the monitoring seismic data to verify the accuracy of the 4D seismic inversion.

Publisher

SPE

Reference24 articles.

1. Insights and Methods for 4D Reservoir Monitoring and Characterization

2. Christopher M. K. , and JosephA. T., (2015), Voigt, Reuss, Hill, and Self-Consistent Techniques for Modeling Ultrasonic Scattering, AIP Conference Proceedings1650, 926 (2015); https://doi.org/10.1063/1.4914698.

3. Downie, W A, and Hood, B F. Development of the Umm Shaif Field in Abu Dhabi. United States: N. p., (1976). Web. Journal Volume: 130; Conference: 9. Arab Petroleum congress, Dubai, United Arab Emirates, 10 Mar 1975.

4. Deep Unsupervised 4D Seismic 3D Time-Shift Estimation with Convolutional Neural Networks;Dramsch;PRE-REVIEW PREPRINT,2019

5. A proven method for acquiring highly repeatable towed streamer seismic data:;Eiken;Geophysics,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3