Asymptotic Solutions of the Diffusivity Equation and Their Applications

Author:

King Michael J.1,Wang Zhenzhen1,Datta-Gupta Akhil1

Affiliation:

1. Texas A&M University

Abstract

Abstract Understanding how pressure fronts propagate (diffuse) in a reservoir formation is fundamental to welltest analysis and reservoir drainage volume estimation. We have developed an alternative approach to the solution of the 3-D diffusivity equation by directly solving the propagation equation for the "pressure front" defined as the maximum pressure response for an impulse source. The pressure front equation is a form of the Eikonal equation, which is a high frequency asymptotic solution of the diffusivity equation in heterogeneous reservoirs and whose properties are well developed in the literature. Most importantly, the Eikonal equation can be solved very efficiently by a class of solutions called the Fast Marching Methods (FMM) for a "diffusive time of flight" (DTOF) that governs the propagation of the "pressure front" in the reservoir. The "diffusive time of flight" can be used as a spatial coordinate to reduce the 3-D diffusivity equation into an equivalent 1-D formulation, leading to a simplified method for rapid reservoir modeling. Recent papers have explored the utility of this 1-D approach for performance prediction using finite difference numerical simulation. The method is especially well suited to the interpretation of the drainage volume, which is of great help in well spacing calculations and in the context of unconventional reservoirs, multi-stage fracture spacing optimization. In this paper we introduce an analytic solution technique for the diffusivity equation, which provides a direct relationship between production data and the reservoir drainage volume. The analytic formulation provides for the direct calculation and extension of many simple well test, rate transient and well performance concepts such as depth of investigation, welltest derivative, drainage volume, flow regimes and well productivity. As with other analytic approaches, these solutions allow superposition in space and in time, which allows for the solution for multiple wells, multiple flow rates, and bounded and composite reservoirs. We validate our approach against well-known solutions in pressure and rate transient analysis usually solved in Laplace space, including pressure transients with wellbore storage and skin. Our study demonstrates that the new approach yields results very close to the known solutions calculated via numerical inversion of the Laplace transform, and indicates how to extend these solutions to problems with heterogeneity and complex fractured well geometry.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3