A Fully-Coupled Free and Adsorptive Phase Transport Model for Shale Gas Reservoirs Including Non-Darcy Flow Effects

Author:

Xiong X..1,Devegowda D..1,Michel G. G.1,Sigal R. F.1,Civan F..1

Affiliation:

1. University of Oklahoma

Abstract

Abstract Accurate modeling of gas through shale-gas reservoirs characterized by nano-meter pores where the effects of various non- Darcy flow regimes and the adsorbed-layer are important is presented and demonstrated by several examples. Quantification of gas transport may be accomplished using the transport equation that is valid for all flow regimes. This equation though needs further modification when transport is through a media where the gas is adsorbed onto the pore wall. In the presence of adsorption, there is a pore pressure dependent loss of porosity and cross-sectional area to free gas transport. The apparent gas permeability correction is accomplished for various flow regimes using the Knudsen number by consideration of the reduction of the cross-sectional area to free gas transport in the presence of adsorption. We show that transport in the adsorbed layer may contribute significantly in the total gas transport in these nanopores. An effective transport model is presented to account for the impact of adsorption through two mechanisms. First, we modify the transport equation to account for the pore-pressure dependent-reduction in the volume available to free gas transport; second, we model transport through the adsorbed layer using Fick's law of diffusion. The coupled model is then compare to conventional transport models over a wide range of reservoir properties and conditions. As pore-pressure is reduced, adsorbed phase gas desorbs into free gas and apparent permeability increases. The difference in the estimated apparent permeability with and without the consideration of the adsorption volume can be a factor of two or more at initial reservoir conditions. Diffusion on the surface of organic pores can be a substantial transport mechanism in shales depending on the pore connectivity, pore pressure, and pore size distribution in the organic pores. The interpretation of production data will be compromised without considering the effects of adsorption on apparent permeability. This work implies that permeability measurements for shale gas reservoirs must be done with methane at in-situ pore pressures. Because these corrections are pore-pressure not effective pressure dependent, effective pressure is not a valid parameter to use in quantifying the pressure dependence of these transport equations.

Publisher

SPE

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3