Affiliation:
1. Norwegian University of Science and Technology
2. Federal University of Santa Catarina
Abstract
Summary
We propose to formulate and solve the reservoir-control optimization problem with the direct multiple-shooting method. This method divides the optimal-control problem prediction horizon in smaller intervals that one can evaluate in parallel. Further, output constraints are easily established on each interval boundary and as such hardly affect computation time. This opens new opportunities to include state constraints on a much broader scale than is common in reservoir optimization today. However, multiple shooting deals with a large number of variables because it decides on the boundary-state variables of each interval. Therefore, we exploit the structure of the reservoir simulator to conceive a variable-reduction technique to solve the optimization problem with a reduced sequential quadratic-programming algorithm. We discuss the optimization-algorithm building blocks and focus on structure exploitation and parallelization opportunities. To demonstrate the method's capabilities to handle output constraints, the optimization algorithm is interfaced to an open-source reservoir simulator. Then, on the basis of a widely used reservoir model, we evaluate performance, especially related to output constraints. The performance of the proposed method is qualitatively compared with a conventional method.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献