Managed Pressure Drilling and Managed Pressure Cementing: First Successful Implementation of Advanced Technologies for Unique Wells with Constant Inflow in Slim Drill Project

Author:

Kaidarov Almas1,Magda Andrey1,Samarin Andrey1,Aliyev Fuad1,Kazakbayeva Zhanna1

Affiliation:

1. NewTech Services

Abstract

Abstract While drilling well in the Pre-Caspian basin, a presumably technogenic nature zone of influx was exposed, which did not fit into the model of the geological structure of the section. Attempts of influx management were unsuccessful. The well had to be abandoned without reaching the target. This article describes the experience of Managed Pressure Drilling and Cementing technologies deployment, process features and equipment hookup in unconventional wellhead configuration and Slim Drill type of rig. Application of MPD technology made reaching target depth successful in the condition of constant water influx. Drilling proceeded in complicated geological conditions: simultaneous crossflow between influx and losses zones, as well as drilling mud gradual replacement by formation fluid. Bottomhole pressure was controlled by Surface Back Pressure made by MPD choke and sealed wellhead using a Rotary Control Device (RCD). The compact set of MPD equipment was rigged up as ergonomically as possible due to space restriction of slim hole drilling techniques. The MPD technology made it possible to complete the construction of the section without curing losses and weighting the drilling fluid up to control technogenic influx, safely and effectively control bottomhole pressure and achieve geological targets. MPD tests were performed at various depths to determine formation pressure and formation integrity, which made it possible to determine the drilling window for successful construction of the section. After finishing drilling, a pull out of hole and well logging was carried out in an open hole on a drilling pipe with pressure control, which was previously impossible due to the high intensity of influx. Running 4-1/2" (114 mm) casing with pressure control, as well as cementing in MPC mode were applied. The surface backpressure was gradually reduced during cementing as heavy cement was pumped to minimize the risk of cement loss while controlling formation fluid influx. As a result, cement was lifted through the annulus to the wellhead, which finally eliminate the complication associated with the presence of incompatible zones of loss and influx, and to eliminate behind-the-casing flows. The economic feasibility of well construction was maintained by set of equipment adapted to non-standard conditions The first application of MPD technology on the Slim Drill (small-sized drilling rig) project successfully revitalized previously abandoned well. It shows the validity of using MPD technology by the help of optimized set of equipment. The work reveals broad prospects for replication on a previously inaccessible wells due to economic reasons.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MODELLING OF DEEP WELL CEMENTING PROCESS;PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions;2024-02-26

2. Investigation on the propagation characteristics of pressure wave during managed pressure drilling;Frontiers in Energy Research;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3