Computation of Effective Dynamic Properties of Naturally Fractured Reservoirs: Comparison and Validation of Methods

Author:

Decroux Benoit1,Gosselin Olivier2

Affiliation:

1. Imperial College London

2. Imperial College London/TOTAL S.A.

Abstract

Abstract Naturally Fractured Reservoirs (NFR) are very heterogeneous media containing highly permeable fractures in a poorly permeable rock matrix. Explicit simulations of such reservoirs are complex and computationally time consuming. Alternatively for full-field simulation, dual-medium models are commonly used (dual-porosity, dual-permeability) where fractures are represented as a continuous medium in communication with the rock matrix. Required effective dynamic properties at the coarse continuous scale should produce the same flow simulation results than Discrete Fracture Network (DFN) models with their small-scale properties, using explicit simulation (as reference). Many calculation methods with different accuracy and computational efficiency have been proposed for the estimation of the anisotropic effective permeability tensor of fracture networks. These methods rely on different conceptual models, which are simplified representations of actual complex and partially unknown fracture systems. They are using either a global deterministic DFN, or local representations of DFNs defined by their statistical properties. Analytical methods rely on connectivity assumptions, seldom met in practice. Numerical methods rely on flow simulations, and are supposed to be more accurate but computationally demanding. The development of new simulators using Discrete Fracture and Matrix (DFM) models, where all fractures are represented explicitly as well as the matrix, offers the opportunity to benchmark the accuracy of the different effective permeability calculation methods. Simulations based on effective properties are compared with DFM model simulations, considered as a reference solution. In a first part, 2D Cartesian fracture networks are simulated explicitly with Eclipse. These reference simulations are compared with simulations based on effective properties. In this paper we consider the following effective permeability calculation techniques: an analytical method (the Oda’s technique); two flow-based numerical methods with different boundary conditions (impermeable boundaries and linearly varying pressure); and a numerical method using a periodic DFN defined locally, that does not depend on boundary conditions (Image Based Periodic Object Simulation – IBPOS -implemented in GoFraK, a plugin of Gocad). In a second part, a simulation was performed on a much more realistic fracture network with CSMP++, simulation software using DFM models. This simulation is compared with simulations using effective properties calculated with the Oda’s method and the two flow-based numerical methods. The first observation concerns the large variability of results, which stresses the large uncertainty produced by the various methods. When compared to the reference, the most accurate effective permeability calculation methods tested in this paper are the numerical methods, using no-flow boundary condition and the IBPOS technique. These results show the importance of the fracture network connectivity for the calculation of the effective permeability, and highlight the weakness of the Oda’s method, which does not take this parameter into account. This paper compares the accuracy of the different effective fracture network permeability calculation methods, against reference solutions. It provides information for choosing the most appropriate methods, and an incentive to question the results of upscaling software tools for NFR. It also stresses the importance of uncertainty estimation, and connectivity calibration versus dynamic data.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3