A Systematical Review of the Largest Polymer Flood Project in the World: From Laboratory to Pilots and Field Application

Author:

Lu X. G.1ORCID,Li W.2ORCID,Wei Y. N.3ORCID,Xu J.1ORCID

Affiliation:

1. C&C Reservoirs

2. PetroChina Daqing Oilfield

3. C&C Reservoirs (Corresponding author)

Abstract

Summary This paper presents a systematical review of the largest polymer flood project in the world, applied to multilayered, heterogeneous sandstone reservoirs in the giant Daqing Oilfield in China. First, reservoir and fluid characteristics are highlighted to understand the heterogeneity of the reservoir. Next, the project history is summarized, including laboratory studies, pilot tests, commercial tests, and fieldwide applications. Third, typical polymer flood performance and reservoir management measures are presented. Finally, key understandings and lessons learned from more than 50 years of experience are summarized. The La-Sa-Xing Field in the Daqing Field Complex contains three types of reservoir sands: Type I sand with high permeability, Type II sand with medium permeability, and Type III sand with low permeability. Polymer flood was studied in the laboratory in the mid 1960s, followed by small-scale pilots beginning in 1972 and industrial-scale pilots starting in 1993, all of which successfully reduced water cut and enhanced oil recovery. Fieldwide application commenced in 1996, targeting the Type I sand. With Type II sand being brought onstream in 2003, the project achieved a peak production of 253,000 BOPD in 2013. Polymer flood reduced water cut by 24.8%. Reservoir management measures, such as zonal injection, profile modification, hydraulic fracturing in low-permeability sand, and injection optimization, proved to be effective. Based on the water-cut performance, production can be divided into four stages: (1) water-cut decline, (2) low water cut, (3) rebound, and (4) water chase. Fit-for-purpose improved-oil-recovery measures were implemented for each stage to improve production performance. Key understandings and lessons learned include the following: (1) Polymer flood improves both sweeping and displacing efficiencies; (2) high interlayer permeability contrast leads to low incremental recovery; (3) variable well spacing should be adopted for different reservoir types; (4) adoption of large molecular weight (MW) and large slug size greatly enhances recovery; and (5) salt-resistant polymer is beneficial for produced water reinjection in Type II sand; (6) zonal injection increased swept reservoir zones by 9.8% and swept pay thickness by 10.3%; (7) profile modifications helped improve vertical conformance in injection wells and led to enhanced sweeping efficiency and extended low water-cut stage; and (8) optimization-recommended well spacing for Type I, Type II, and Type III sands is 10–15.5, 5.6–7.6, and 2.5–3.6 acres, respectively. In comparison with generally 6–8% incremental recovery by polymer flood in the industry, this project achieved an impressive incremental recovery of 12%, enhancing the oil recovery factor from 40% by primary recovery and waterflood to 52% stock tank oil initially in place (STOIIP). The progressive approach from laboratory experiments through pilots and finally to field application is a best practice for applying polymer flood fieldwide for a giant field such as the La-Sa-Xing Field.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3