Temporal Evolution of the Geometrical and Transport Properties of a Fracture/Proppant System Under Increasing Effective Stress

Author:

Chen Cheng1,Martysevich Vladimir1,O’Connell Pete1,Hu Dandan1,Matzar Luis1

Affiliation:

1. Halliburton

Abstract

Summary A fracture/proppant system is used to mimic the interaction between the rock matrix and proppants during the process of fracture closing attributed to pore-pressure reduction during hydrocarbon production. Effects of rock type and bedding-plane direction are investigated. High-strength sintered bauxite proppants are placed in hydraulic fractures in sandstone and shale rock. There are two bedding-plane directions in shale rock: One is 90°, which is perpendicular to the fracture, whereas the other is 0°, which is parallel to the fracture. Increasing mechanical loading is imposed to close the fracture. Micrometer-scale X-ray tomography is used to visualize the internal structure. Cutting-edge image-processing methods are applied to extract patterns of both the fracture and matrix. A pore-scale lattice Boltzmann simulator, optimized with graphics-processing-unit parallel computing, is used to simulate the permeability tensor inside the fracture. Significant proppant embedment is observed in the sandstone rock when the effective stress is increased to 4,200 psi. Consequently, fracture porosity is reduced by nearly 70%, and permeability is reduced by two orders of magnitude. Embedded proppants are unable to create microscopic fractures on the matrix surface because of the low bonding strength between grains. In the shale rock with 90° bedding planes, when the effective stress is increased to 3,000 psi, significant microscopic fractures on the matrix surface are created because the lamination structure of the matrix is opened. In the shale rock with 0° bedding planes, noticeable microscopic fractures on the matrix surface are not observed until the effective stress is increased to 6,990 psi. Proppant embedment is insignificant because of the high bonding strength between fine grains. Significant anisotropy in the permeability tensor is observed during all experiments. This study is the first to use cutting-edge imaging and modeling methods to quantitatively study the interaction between proppants and the rock matrix during the stress-increase process. It has important applications, which help sustain production with adequate fracture conductivity in deep reservoirs (e.g., the Haynesville shale).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3