Ultra-Low-Invasion Fluid Technology Increases Operational Window to Enhance Drilling, Reduce Damage in Unstable Venezuela Formations

Author:

Herdes Miguel1,Aguilar Katiuska1,Fernandez Daniel1,Garcia Jose1,Moreno Jose2,Maldonado Reinaldo2

Affiliation:

1. PDVSA

2. Impact Fluid Solutions

Abstract

Abstract Historically, the well documented diversity and complexity of formations throughout Venezuela have severely complicated the design and engineering of drilling fluid systems capable of maintaining the wellbore stability required to maximize drilling efficiency and reduce formation damage. Producing formations in Eastern Venezuela, are typically low-pressure consolidated sands with elevated bottomhole temperatures and differential pressures ranging from 3,000 and 7,000 psi. This paper describes the technical development and subsequent application of an ultra-low-invasion drilling fluid additive, designed to deposit a thin, impermeable barrier over the pores and microfractures of weak, under-pressured and otherwise troublesome formations, to maintain wellbore stability and reduce formation damage. Three case studies will be presented to demonstrate the effectiveness of the technology to prevent differential sticking and other wellbore instability issues, minimize fluid-related non-productive time (NPT), increase overall drilling efficiency, and reduce operating costs. Validated in 14 wells, the operating window of the Naricual Formation was expanded appreciably due to the use of the ultra-low-invasion drilling fluid technology. It was also demonstrated that stability was maintained in the open hole with 7,000 psi of differential pressure at 16,810 ft, which allowed an optimized well design that eliminated one casing section. The wellbore stability was confirmed with wireline pressure-point log measurements. Furthermore, through direct offset comparisons, the authors will detail significant improvements in wellbore stability and the subsequent prevention of losses and differential sticking in a different field, where more than 1,000 bbl of losses had been recorded across the Miocene and mid-Eocene sediments. Moreover, core tests results will illustrate the efficiency of the thin, but tough filter cake, to prevent the invasion of drilling fluid into the formation matrix, thereby minimizing formation damage down to 4.5% (95.5% retained permeability). Thus, the original structure of the formation is preserved, effectively preventing formation collapse, differential pressure-induced crossflow across open zones, and importantly, pay zone contamination.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3