Abstract
Abstract
Acidizing deep carbonate formations by Hydrochloric acid (HCl) is a complex task due to high reaction and corrosion rates. Mixing organic acids with HCl is a typical method to reduce the acid's reactivity and corrosivity. Lactic acid has not been investigated completely in the area of carbonate acidizing. Lactic acid has a dissociation constant similar to formic acid, which is approximately 10 times larger than acetic acid. Therefore, the objective of this work is to compare lactic/HCl blends with plain HCl and formic/HCl blends.
Corrosion tests were conducted at high temperature on C-95 steel coupons to investigate associated corrosion damage. Coreflood tests were performed on Indiana limestone cores to mimic matrix acidizing treatment and to investigate amount of pore volumes required to breakthrough. All blends were prepared to be equivalent to 15 wt% (4.4 M) HCl for comparison. Lactic and formic acid concentrations were set to be (0.5 or 1 M), and HCl concentration was calculated as appropriate to reach a blend with strength of 4.4 M.
In terms of corrosivity evaluation, blends of lactic and HCl acids showed a corrosion rate of up to 1.97 lb/ft2 at 300°F. The formic and HCl blend showed a corrosion rate of 1.68 lb/ft2 at the same temperature. The difference in corrosion rates between the two mixtures is due to molecular weight difference between lactic and formic acids. When both acids were prepared at 1 M, lactic acid blend required more HCl to be equivalent to 15 wt% HCl acid which was associated with an increase in corrosion rate. Coreflood results established acid efficiency curves for lactic/HCl acid blends. The curves highlighted the correlation between acid-core reactivity, injection rate, and dissolution pattern. Lactic/HCl blend was less reactive than formic/HCl mixture as the last required lower injection rate to obtain optimum pore volume to breakthrough at 300°F. Lactic/HCl blend was able to generate an optimum dissolution pattern as a dominant wormhole was shown on tested core plugs inlet face.
This study expands the investigation of lactic acid utilization in carbonate acidizing. Major advantages rendered by using lactic acid with HCl include: (1) favorable dissolution pattern due to lactic acid being less reactive than HCl or formic acids, and (2) less corrosion rates comparing to HCl, that can reduce allocated costs for maintenance and replacements.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献