Real Time Flow Estimation Using Virtual Flow Measurement Techniques: A Field Application in Intelligent Well Completion

Author:

Ajayi Arashi1,Fasasi Toyin2,Okuns Godwin2

Affiliation:

1. Model Energy

2. Shell Petroleum Development Company

Abstract

Abstract Intelligent well completion has been used in various applications including but not limited to fields with multiple reservoirs. In such applications, estimation and allocation of downhole flow rates at each reservoir are critical for efficient reservoir management. One way of estimating downhole flow rates is the deployment of dedicated physical zonal flowmeters, using virtual flowmeter techniques based on the architecture of the intelligent well completion or combination of both options. This paper describes the methodology and field wide application of using real time data from an intelligent well to estimate flow rates without the need for a physical flow meter. The real time data are from the installed downhole gauges in the well. This is combined with interval control valves, static and dynamic well information to provide reliable estimate of well production rate. Since downhole pressure, temperature and ICV information is already available in an intelligent well, this technique provides a lower cost option of obtaining zonal and total well production and injection rates. The methodology used incorporates analytical choke equations, tubing performances, and nodal analysis (inflow performance relationship) with other reservoir parameters to build a flow estimation algorithm and model. Various downhole equipment (interval control valves, packers, pressure and temperature sensors etc) and related well information are captured into the system to set initial and final boundary conditions. Well test data can be used to calibrate the system and improve the accuracy of the model. In the field application described, results vary from well to well with field average estimates within +/−10% when compared to measurements from normal surface metering systems. Well tests from the surface measurements were used to calibrate and improve accuracy. The result shows an operating envelope that covers a range of pressure drop across the ICV. The method is capable of handling single and two phase system. Further enhancements are been made to handle multiphase and systems outside the steady state regime. In addition, enhanced data filtering techniques implemented in the system help managed noisy data. The analytical techniques described enhance digital oilfield capability in optimizing production through affordable flow rate estimation for intelligent wells. The technique presented can also be used to increase the reliability of applicable wells since no additional physical hardware is required.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3