Evaluating Formation Damage Predictions Drawn from HPHT Core Flooding Tests on Brent Group Sandstone Reservoir Cores with Heavy Formate Drill-in Fluids: A Case Study from the Huldra Field

Author:

Downs John1,Fleming Niall2

Affiliation:

1. Formate Brine Ltd

2. Statoil ASA

Abstract

Abstract The existing literature provides little guidance on the relevance of formation damage or return permeability results obtained from reservoir-conditions core flood testing on sandstone cores with heavy formate fluids. The drilling and completion in open hole of all six production wells in the Huldra field with heavy formate fluid provided a rare opportunity to appraise the results from HPHT core flood testing carried out on Ness (North Sea Brent Group) sandstone reservoir cores as part of the original drilling fluid qualification process for the Huldra development program. Low- and high-permeability sandstone core plugs obtained from the productive Ness reservoir formation in the Huldra field were subjected to static and dynamic exposure to heavy formate drill-in fluids under HPHT reservoir conditions at 350 psi overbalance for a period of 296 hours. The cores were then exposed to short-duration drawdowns under HPHT reservoir conditions to simulate the very early phase of production start-up. The permeability impairment results obtained in these laboratory tests were compared against the production performance data for six Huldra field wells drilled and completed with sand screens in open hole in Brent Group sandstones with the same heavy formate fluids. The reservoir-conditions (11,400 psi, 150°C) core flooding test with a SG 1.92 formate drill-in fluid sample from a Huldra well drilling job reduced the permeability of a 1416 mD Ness core by 37.8%. The same fluid reduced the permeability of a 2.8 mD Ness core by 65.9%. Repeating the same reservoir-conditions core flooding tests with a fresh SG 1.92 formate drill-in fluid sample prepared in the laboratory gave very similar results. In all cases the permeability of the cores was restored to original levels by soaking the wellbore face of the cores at balance for 24 hours with 15% acetic acid under reservoir conditions. The full restoration of permeability by non-invasive soaking of the core faces with dilute organic acid at balance suggested that the source of the tractable impairment was residual CaCO3/polymer filter cake still pressed onto the core face after lengthy drilling fluid exposure at overbalance and a very short clean up by drawdown. The six Huldra production wells were drilled with SG 1.92 formate fluid at 37°-54° inclinations through the Tarbert, Ness, Etive and Rannoch reservoir formations and completed in open hole with 300-micron single-wire-wrapped screens. The wells cleaned up naturally during production start-up, without the need for acid treatment, resulting in skins that were at the low end of the expected range. The Hudra field was shut down in 2014 after producing 17.3 GSm3 of gas, representing an 80% recovery of the original gas in place. This has been a useful first appraisal of a set of historical return permeability test results obtained with heavy K/Cs formate fluids. As more data become available from other HPHT gas condensate fields developed entirely with heavy formate brines (e.g. the Kvitebjørn and Martin Linge fields) it may become possible to assign some predictive value to the results of return permeability tests with these fluids.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3