Screenless Completions: The Development, Application and Field Validation of a Simplified Model for Improved Reliability of Fracturing for Sand Control Treatments

Author:

Guinot Frederic1,Zhao Jun1,James Simon1,d'Huteau Emmanuel2

Affiliation:

1. Schlumberger

2. Repsol-YPF

Abstract

Abstract The successful application of fracturing for sand control has been reported from many different areas. Several explanations have been advocated for these successes such as "re-stressing" the wellbore, creation of a "halo effect" around the wellbore and maintaining the bottom hole pressure above a critical level to prevent perforation collapse. The latter approach has led to complex models predicting the conditions of perforation failure. However, once the perforations have collapsed, the production of formation sand is governed by the transport of the sand from the perforation tunnels. Frequently, decreasing the production rate stops sand production, indicating that there is a critical flow rate below which sand cannot be transported into the wellbore. In this study, we present the development, application and field validation of a spreadsheet tool to improve the reliability of fracturing for sand control treatments. A universal curve was generated from numerical simulations, showing that the percentage of the total flow through the perforations not connected to the fracture was a function of the formation and fracture properties and was independent of the reservoir fluid properties. The generation of a universal curve eliminates the need to use a reservoir simulator and allowed the development of a tool to aid the design of fracturing for sand control treatments. The spreadsheet tool has been validated with data from successful fracturing for sand control treatments. Introduction Successful applications of fracturing for sand control have been reported in the literature1,2 as well as in the field. Several mechanisms have been proposed for these successes. Some have put forward the "re-stressing" of the wellbore3 via the addition of a foreign material: the proppant pack. Some have investigated the creation of a "halo effect" around the wellbore4. Others studied the elevation of the bottom hole pressure to prevent perforation collapse.5 The latter approach led to the development of complex models predicting the conditions of perforation failure.6,7,8 In cases where optimised perforating (0° phased or 180° phased oriented in the preferred fracture direction) has been followed by fracturing, the fracture covers all the perforations eliminating problems due to failed perforations.1 In most of the field cases reported in which fracturing for sand control has been used, sand production had already begun. In the reported cases, sand production may have come from perforation debris or failed perforation tunnels.9 The quantification reported has never been sufficiently accurate to distinguish between these two cases. Nor do we have enough information to assess whether the sand production regime was transient (sand bursts) or permanent.3 In both cases however, we can conclude that the flow rate in at least one perforation was sufficient to produce enough sand to require a remedial operation. The importance of fluid flow in the perforations has been recognised by Tronvoll et al.8 to describe the sand production pattern after perforation collapse. Interestingly enough, the flow rate at which sand production started is normally available from these wells. It is logical to interpret the flowrate at which sand production is detected as a critical flowrate below which no sand is being transported towards the wellbore - assuming that the flow rate is sufficient to lift the produced sand up the production tubing. In the present study, we analyse how fracturing affects the flow pattern in the near wellbore area, and how we can use fracturing alone as a sand control/sand management tool.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3