Optimum Injection Rate of A New Chelate That Can Be Used To Stimulate Carbonate Reservoirs

Author:

Mahmoud M.A.. A.1,Nasr-El-Din H.A.. A.1,De Wolf C.A.. A.2,LePage J.N.. N.2

Affiliation:

1. Texas A&M University

2. AkzoNobel

Abstract

Summary Different chelating agents were used as alternatives for hydrochloric acid (HCl) in matrix acidizing to create wormholes in carbonate formations. Previous studies demonstrated the use of ethylenediaminetetraacetic acid (EDTA), hydroxy ethylenediaminetriacetic (HEDTA), and glutamic acid-N,N-diacetic acid (GLDA) as standalone stimulation fluids to stimulate carbonate reservoirs. The main problem of using EDTA and HEDTA is their low bio-degradability. GLDA was introduced as a standalone stimulation fluid for deep carbonate reservoirs where HCl can cause corrosion and face dissolution problems. In this study, calcite cores 1.5 in. in diameter and 6 or 20 in. in length were used to determine the optimum conditions where the GLDA can break through the core and form wormholes. GLDA solutions with pH values of 1.7, 3, and 3.8 were used. The optimum conditions of injection rate and pH were determined using coreflood experiments. Damköhler number was determined using the wormhole length and diameter from the CT scan 3D and 2D images. GLDA was compared with chelates that are used in the oil industry such as EDTA and HEDTA. GLDA also was used to stimulate parallel cores with different permeability ratios (up to 6.25). GLDA was found to be very effective in creating wormholes at pH = 1.7, 3, and 3.8; at different injection rates; and at temperatures up to 300°F. Increasing the temperature increased the reaction rate and less volume of GLDA was required to break through the core and form wormholes. Unlike HCl, in GLDA there was no face dissolution or washout in the cores even at low injection rates (0.5 cm3/min). An optimum injection rate and Damköhler number were found at which the pore volume (PV) required to create wormholes was the minimum. GLDA at pH 1.7 and 3 created wormholes with a small number of PV (at 1 cm3/min, GLDA at pH 1.7 required 1.5 PV at 300°F, and at pH 3 it required 1.8 PV). Compared with acetic acid, the volume of GLDA at pH 3 required to create wormholes was less than that required with acetic acid at the same conditions. GLDA was found to be effective in stimulating parallel cores up to 6.25 permeability contrast (final permeability/initial permeability).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3