Numerical Study on Simultaneous Propagation of Multiple Fractures: A Method to Design Nonuniform Perforation and In-Stage Diversion

Author:

Yunpeng Wang1ORCID,Tiankui Guo2ORCID,Ming Chen1ORCID,Zhanqing Qu1ORCID,Zunpeng Hu1ORCID,Jinhao Cao1ORCID,Dingwei Weng3ORCID

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China); Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China)

2. School of Petroleum Engineering, China University of Petroleum (East China); Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China) (Corresponding author)

3. Langfang Branch of PetroChina Petroleum Exploration & Development Research Institute

Abstract

Summary The uneven propagation of multifractures is a key factor restricting production growth due to stress shadow and heterogeneity. To date, limited-entry fracturing techniques, nonuniform perforation, and in-stage diversion have been commonly used to promote even multifracture growth. In this study, a fully coupled multiple pseudo-3D (P3D) fracture simulator has been developed to examine the competitive propagation of multifractures during multicluster fracturing in a horizontal well. The present model considers stress interaction among multiple fractures, perforation erosion, fluid distribution among clusters, and in-stage diversion. The results of the model are validated against the reference data. Using the model, a series of numerical simulations are performed to investigate multifracture propagation with nonuniform perforation and in-stage diversion fracturing. We estimate the value of stress interaction for different fractures and time based on the approximate solution of Perkins-Kern-Nordgren (PKN) fracture in the viscosity-dominated regime and improve the dimensionless parameter that characterizes the competition between stress interaction and perforation friction. The fluid distributes evenly when the dimensionless parameter is less than unity (perforation friction is larger than stress interference). Based on this dimensionless parameter, a method to design nonuniform perforation and in-stage diversion is proposed. Results show that in the case of homogeneous in-stage stress, the perforation parameters should be selected under the condition that the dimensionless parameter is less than unity. In the case of heterogeneous in-stage stress and based on the perforation parameters selected under homogeneous stress conditions, the perforation holes in the high-stress cluster should be increased, making the reduction of perforation friction equal to the value of the in-stage stress heterogeneity. The stress heterogeneity can be balanced by decreasing the perforation friction of the high-stress clusters. In this way, nonuniform perforation under heterogeneous in-stage stress conditions can be designed quantitatively without numerical simulation. For in-stage diversion treatment, a method to design the number of ball sealers is proposed based on the results of nonuniform perforation, and only several or even zero groups of simulation are necessary to find the optimal number of ball sealers. A series of numerical simulations shows that the proposed design method is reliable and achieves a satisfactory result in an actual field case. The results can be helpful for nonuniform perforation and in-stage diversion design for multicluster fracturing in a horizontal well.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3