Interfacial Viscoelasticity of Crude Oil/Brine: An Alternative Enhanced-Oil-Recovery Mechanism in Smart Waterflooding

Author:

Bidhendi Mehrnoosh Moradi1,Garcia-Olvera Griselda1,Morin Brendon1,Oakey John S.1,Alvarado Vladimir1

Affiliation:

1. University of Wyoming

Abstract

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3