Abstract
Summary
Oil production from fractured reservoirs can occur by spontaneous water imbibition and oil expulsion from the matrix into the fracture network. Injection of dilute surfactant can recover additional oil by lowering oil/water interfacial tension (IFT) or altering rock wettability, thereby enhancing countercurrent movement and accelerating gravity segregation. Modeling of such recovery mechanisms requires knowledge of temporal and spatial fluid distribution within porous media. In this study, dilute surfactant imbibition tests performed for vertically oriented carbonate cores of the Yates field were found to produce additional oil over brine imbibition. Computerized tomography (CT) scans were acquired at times during the imbibition process to quantify spatial fluid movement and saturation distribution, and CT results were in reasonable agreement with material-balance information. Imbibition and CT-scan results suggest that capillary force and IFT gradient (Marangoni effect) expedited countercurrent movement in the radial direction within a short period, whereas vertical gravity segregation was responsible for a late-time ultimate recovery. Wettability indices, determined by the U.S. Bureau of Mines (USBM) centrifuge method, show that dilute surfactants have shifted the wetting characteristic of the Yates rocks toward less oil-wet. A numerical model was developed to simulate the surfactant imbibition experiments. A reasonable agreement between simulated and experimental results was achieved with surfactant diffusion and transitioning of relative permeability and capillary pressure data as a function of IFT and surfactant adsorption.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献