A Mechanistic Understanding of Asphaltenes Precipitation From Varying-Saturate-Concentration Perspectives

Author:

Prakoso A. A.1,Punase A. D.1,Hascakir B..1

Affiliation:

1. Texas A&M University

Abstract

Summary Asphaltenes precipitation within reservoir pores or production flowlines can severely hamper the petroleum-extraction process. Although the effect of temperature and pressure on asphaltene deposition is well-known, the manner in which the variations in oil composition affect the asphaltenes-precipitation mechanism requires more clarity. This work investigates the effect of crude-oil compositional change on asphaltene stability. The impact of oil composition is analyzed by preparing pseudocomponents through blending the crude oil with their own saturates fractions. A systematic characterization of 11 different bitumen and crude-oil samples was carried out by density and viscosity measurements and the determination of the elemental composition and saturates, aromatics, resins, and asphaltenes (SARA) contents. Further analyses were conducted on the asphaltenes separated by use of n-pentane. The cluster size was determined by a particle-size analyzer, and the stability of asphaltenes was evaluated by zeta-potential. The molecular structure of SARA fractions and bulk crude-oil samples was analyzed by Fourier-transform infrared (FTIR) spectroscopy. Onset-of-asphaltenes-precipitation (OAP) tests on crude-oil samples were achieved by the addition of different solvents (n-pentane, n-heptane, and crude-oil saturates fraction). While the physical characterization studies could only provide weak relations between the density/viscosity and the asphaltene content of the bulk samples, it has been found that mainly the ratio of the heavy (resins + asphaltenes) to light (saturates +aromatics) fractions controls the viscosity and the °API value of the crude oils. As this ratio increases, the crude oil becomes more viscous and dense. Also, the asphaltene/resin ratio was found to be critical because of its impact on asphaltene stability, which was determined through zeta-potential measurements. The high asphaltene/resin ratios result in low asphaltene stability; however, this effect is surpassed by the higher aromatics fraction in the bulk oil. Asphaltene stability was further studied with OAP tests. The OAP-test results provide the behavior of asphaltenes after the interaction of bulk oil samples with normal saturated hydrocarbons; however, our study improves the OAP-test procedure by conducting OAP tests with crude oil's own saturates fractions. The interaction of saturates fraction with crude oil resulted in more asphaltenes precipitation compared with interaction of n-pentane and n-heptane. The FTIR analyses indicate the presence of impurities in saturates fractions, and these impurities are believed to cause higher asphaltenes precipitation as a result of the polar nature of the impurities.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impacts of CO2 flooding on crude oil stability and recovery performance;Journal of Petroleum Exploration and Production Technology;2023-09-14

2. Connectionist Models for Asphaltene Precipitation Prediction by n-Alkane Titration─Pressure and Crude Oil Properties Considered;Industrial & Engineering Chemistry Research;2023-08-18

3. Fundamentals of In Situ Upgrading;Catalytic In‐Situ Upgrading of Heavy and Extra‐Heavy Crude Oils;2023-06-02

4. The role of reservoir fluids and reservoir rock mineralogy on in-situ combustion kinetics;Geoenergy Science and Engineering;2023-05

5. The effect of reaction time and temperature on the aquathermolysis process of heavy crude oil;Petroleum Science and Technology;2022-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3